
Theoretical Computer Science 287 (2002) 73–100
www.elsevier.com/locate/tcs

A guide to membrane computing

Gheorghe P%auna;b;∗ , Grzegorz Rozenbergc;d
aInstitute of Mathematics, Romanian Academy of Sciences, P.O. Box 1-764, 70700 Bucures!ti, Romania

bRovira i Virgili University, Pl. Imperial Tarraco 1, 43005 Tarragona, Spain
cLeiden Institute for Advanced Computer Science, Leiden University Niels Bohrweg 1, CAA 2333

Leiden, The Netherlands
dDepartment of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

Abstract

Membrane systems are models of computation which are inspired by some basic features of
biological membranes. In a membrane system multisets of objects are placed in the compartments
de.ned by the membrane structure, and the objects evolve by means of “reaction rules” also
associated with the compartments, and applied in a maximally parallel, nondeterministic manner.
The objects can pass through membranes, the membranes can change their permeability, they
can dissolve, and they can divide. These features are used in de.ning transitions between con.g-
urations of the system, and sequences of transitions are used to de.ne computations. In the case
of symbol-objects, we compute a set of numbers, and in the case of string-objects we compute a
set of strings, hence a language. Many di4erent classes of such computing devices (now called P
systems) have already been investigated. Most of them are computationally universal, i.e., equal
in power to Turing machines. Systems with an enhanced parallelism are able to trade space
for time and solve in this way (at least in principle), by making use of an exponential space,
intractable problems in a feasible time.

The present paper presents the basic ideas of computing with membranes and some funda-
mental properties (mostly concerning the computational power and e6ciency) of P systems of
various types 1 . c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Natural computing; Membrane computing; Turing computability; Chomsky hierarchy;
NP-complete problems

1 The current bibliography of membrane computing can be found at the web address
http://bioinformatics.bio.disco.unimib.it/psystems

∗ Corresponding author. Institute of Mathematics, Romanian Academy of Sciences, P.O. Box 1-764, 70700
Bucharest, Romania.

E-mail addresses: gp@astor.urv.es, gpaun@imar.ro (G. P%aun), rozenber@liacs.nl (G. Rozenberg).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00136 -6

http://bioinformatics.bio.disco.unimib.it/psystems

74 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

1. Introduction

The basic function of biological membranes is to de>ne compartments and to relate
compartments to their environment, including neighboring compartments. For instance,
the plasma membrane (see, e.g., [2]) ensures that certain substances (molecules) stay
within (do not escape from) the cell, while other substances, e.g., toxic molecules,
stay out of the cell. Moreover, membranes allow certain molecules to pass through,
e.g., waste products to leave, and certain nutrients to enter. Also, membranes form a
communication structure, allowing messages (signals) to be received or to be transmit-
ted by the enclosed space. This communication is crucial for establishing multicellular
communication and hence for establishing multicellular organization (see, e.g., [26]).
This compartmentalization by membranes, with each enclosed area having its own set
of molecules and (enzymes enhancing) reactions, with the transport of molecules and
(hence) the communication through membranes, is the paradigm underlying membrane
systems (see, e.g., [44,10, Chapter 3]).
It must be stressed that membrane systems (also called P systems) are not intended

to model the functioning of biological membranes. Rather, we explore the computa-
tional nature of various features of membranes, i.e., we investigate how such features
can be used in a model of computation. To this aim, we abstract from a number of
principles underlying the functioning of biological membranes, and use this abstraction
to construct a novel model of computing. Such an approach is typical for the area of
Natural Computing, where one studies all kinds of computing inspired by (or gleaned
from) nature.
The membrane structure of a P system is a hierarchical arrangement of membranes

(understood as three-dimensional vesicles), embedded in a skin membrane, the one
which separates the system from its environment. A membrane without any membrane
inside is called elementary. Each membrane de.nes a region. For an elementary mem-
brane this is the space enclosed by it, while the region of a nonelementary membrane
is the space in-between the membrane and the membranes directly included in it. Fig. 1
illustrates these notions. We label membranes (by positive integers in Fig. 1) in order
to be able to address them in programming computations by membrane systems. Since
each region is delimited (“from the outside”) by a unique membrane, we will use
the labels of membranes to also identify (label) the regions they delimit. We will use
the obvious terminology here—thus, for example, we say that membrane 8 is directly
contained in membrane 6 (or that membrane 6 directly contains membrane 8).
Each region contains a multiset of objects, and a set of (evolution) rules. The objects

are represented by symbols from a given alphabet. Typically, an evolution rule from
region r is of the form ca→ cbinjdoutdhere, and it “says” that a copy of the object a,
in the presence of a copy of the catalyst c (this is an object which is never modi.ed,
it only assists the evolution of other objects), is replaced by a copy of the object b
and two copies of the object d. Moreover, the copy of b has to “immediately” enter
the inner membrane of region r labeled by j (hence to enter region j), a copy of
object d is sent out through the membrane of region r, and a copy of d remains in
region r. Note that the considered evolution rule can be applied in the region r only
if this region includes the membrane j.

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 75

Fig. 1. A membrane structure.

Note that (syntactic) evolution rules are stated in terms of objects while their im-
plementation (execution) is done using copies of objects: at a given moment the given
region may contain many copies (a multiset) of a given object. In order to simplify
descriptions of computations in membrane systems, we will often use the term “object”
rather than “a copy of an object”, but, bearing in mind the above principle, the real
meaning will always be clear from the context of considerations.
Membrane systems are synchronous, in the sense that a global clock is assumed, i.e.,

the same clock holds for all regions of the system. In each time unit a transformation
of a con>guration of the system takes place by applying the rules in each region,
in a nondeterministic and maximally parallel manner. This means that the objects to
evolve and the rules governing this evolution are chosen in a nondeterministic way;
this choice is “exhaustive” in the sense that, after the choice was made, no rule can
be applied anymore in the same evolution step (there are not enough objects available
anymore for any rule to be applied now—this is the maximality of application).
It is instructive to see a single step transforming a con.guration of the system as a

“macro-step” consisting of several “micro-steps” performed after each other. Consider
a region r of the system. First, we assign (occurrences of) objects from r to rules
from r, nondeterministically choosing rules and objects until no further assignment is
possible (note that the multiplicity of objects present in r is crucial in this micro-step).
Then, all these “assigned” objects are removed from the current multiset of objects in
r, and (occurrences of) all objects speci.ed by the right-hand sides of the chosen rules
are added to this multiset, together with their “transfer commands”: inj, out, here. Now,
all transfers indicated by commands inj and out are executed (if a copy of an object is
introduced in the skin region, i.e., the region delimited by the skin membrane, and its
transfer command is out, then it will be sent out of the system, to the environment, and
it never “comes back”), and copies of objects with the transfer command here remain
in region r. Finally, the transfer commands (subscripts) are removed, and a “macro-

76 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

step” is completed for r. Since all regions are processed “simultaneously” (with all
micro-steps performed synchronously), this completes the global macro-step.
In this way, one gets transitions between the con.gurations of the system. A se-

quence of transitions is called a computation. A con.guration is halting, if no rule is
applicable in any region (nothing can happen anymore). A computation is halting if it
reaches a halting con.guration. We consider only halting computations. The result of
a (halting) computation is the number of objects sent (through the skin membrane) to
the environment during the computation.
Many modi.cations=extensions of this very basic model described above are dis-

cussed in the literature. We will now brieIy discuss two additional features that will
be used in the basic model of membrane systems considered in this paper.
The .rst one is a priority relation among rules. This means that in each region a

partial order relation on the set of rules in this region is given—then, a rule can be
chosen (to process a multiset of objects) in a given step only if no rule of a higher
priority is applicable.
Another “control device” for P systems considered in the literature is a modi.cation

of membrane permeability. Thus, the membranes can be dissolved (the objects of a
dissolved membrane remain in the region surrounding it, while the rules are removed;
the skin membrane cannot be dissolved), or made impermeable (no object can pass
through such a membrane).
There are two standard ways of investigating the inIuence of various features of P

systems: (1) to consider their computational power=competence—e.g., are membrane
systems using given features computationally universal (hence equivalent to Turing
machines)?, and (2) to consider their computational complexity (are membrane systems
able to make use of their intrinsic parallelism and solve hard problems, e.g., NP-
complete problems, in a feasible time?). These two topics will be considered in detail
in this paper.
Some of the main features of membrane systems are used in other models of

computing—in particular, the parallel (string) rewriting is a basic feature of Linden-
mayer systems, [61], and the multiset processing underlies the Gamma language model
[4] and the Chemical Abstract Machine [6]. The reader may look up the references
concerning these models in order to see the di4erent type of motivation, research ques-
tions, and applications associated with these basic features of membrane systems.

2. Bio-membranes; structure and functions

In this section we describe in more detail some of the basic features of the plasma
membranes. We have chosen those features that are of interest from a computational
point of view and from which we will abstract the (mathematical) features of our
computing model.
A cell has a complex structure, with several compartments delimited inside the main

membrane by several inner membranes: the nucleus, the Golgi apparatus, various vesi-
cles, etc. In principle, all these membranes ful.ll the same main roles: they are separa-
tors and >lters. We now recall some facts concerning the structure and the functioning

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 77

Fig. 2. The structure of the plasma membrane.

of the plasma membrane (see, e.g., [2,26]) which will be relevant in the sequel of this
paper.
The currently accepted model of the membrane structure is the so-called Auid-mosaic

model, proposed in 1972 by S. Singer and G. Nicolson. According to this model,
a membrane is a phospholipid bilayer in which protein molecules (as well as other
molecules, such as cholesterol, steroids and others) are totally or partially embedded
—this is illustrated in Fig. 2.
The phospholipid molecules are composed of two main parts: a polar head and a

nonpolar tail. The head is composed of a phosphate group and a nitrogen group, the
tail consists of two fatty acid chains; the head is bonded to the tail by a glycerol.
Consequently, the heads of the molecules in the two layers are hydrophylic, while
the tails are hydrophobic. This explains the arrangement of heads against the aqueous
solutions from the inner region (plasma) and from outside the cell, as well as the
di6culty of passing water through a membrane. Moreover, the polar heads lead to
polarizations of the two sides of the membrane: positive charge in the outside layer
and negative in the inner layer of molecules. This facilitates the exit of negative ions
and the entrance of positive ions.
The (plasma) membrane is only partially permeable. For instance, small noncharged

molecules, particularly if they are lipid soluble, cross the membrane almost freely.

78 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

Larger molecules can only cross a membrane if they are assisted, while charged ions
pass selectively from a region to another one.
The transmembrane transfer of molecules can take place in a passive manner, e.g.,

by di4usion towards the region of lower concentration, and in an active (mediated)
manner. The most important active membrane transfer is done by protein channels
present in various numbers in membranes. For instance, water (which otherwise cannot
pass through the hydrophobic barrier of the tails of the phospholipidic molecules) can
pass through such channels.
Actually, there are two main types of protein channels, some which just select the

moving objects by their size, and others, the so-called carrier proteins, which interact
with speci.c molecules (perhaps also modifying them) when helping them to cross the
membrane.
Other important functions of membrane proteins are the catalytic activity (certain

reactions can take place only in the presence of certain enzymatic proteins), recognition
and binding activities (certain proteins recognize certain molecules or even catch them
and keep them bound to the membrane).
Another important aspect is the way the neighboring cells establish protein channels

for inter-cellular communication: due to the fact that the phospholipid molecules can
move on the membrane surface (that is why the model is called the “Iuid-mosaic” one),
when two membranes touch each other, their proteins can “look for each other”; when
two proteins come close enough, they bind to each other and establish a unique channel
through the two membranes. In this way, a complex communication network can be
established among cells. If one of the cells is invaded by “undesired” molecules, then
the cell isolates itself from the neighboring cells by closing the passage channels—they
may be reopened again, once the emergency situation has been resolved.
We conclude this section by stressing once again that biological membranes provide

“a protected and well equipped” space (a kind of a natural reaction tube) within which
chemical reactions can take place. Correspondingly, membranes in a P system provide
space (and objects) for computations.

3. The basic model

We move now to a more formal presentation of the membrane-based computing
paradigm, by introducing one of the basic types of P systems, followed by an example.
A membrane structure is pictorially represented by an Euler–Venn diagram (like the

one in Fig. 1); it can be mathematically represented by a tree, or by a corresponding
string of matching parentheses. For instance, the membrane structure from Fig. 1 is
represented by the following parentheses expression:

[1 [2]2 [3]3 [4 [5]5 [6 [8]8 [9]9]6 [7]7]4]1:

Since the membranes have labels, the pairs of corresponding parentheses also have
labels. It should be noted that the same membrane structure may be represented by
di4erent parenthetic expressions (the order of neighboring membranes placed in the
same upper membrane does not matter).

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 79

For the basics of formal language theory we refer the reader to, e.g., [63] (as a
matter of fact, our use of formal language theory in this paper is quite limited). We
use V ∗ to denote the set of all strings over the alphabet V (we consider only .nite
alphabets). For a∈V and x∈V ∗ we denote by |x|a the number of occurrences of a in
x. Then, for V = {a1; : : : ; an}, the Parikh mapping associated with V is the mapping
on V ∗ de.ned by �V (x)= (|x|a1 ; : : : ; |x|an) for each x∈V ∗. The family of recursively
enumerable languages is denoted by RE, and the Parikh images of languages in RE is
denoted by PsRE (this is the family of all recursively enumerable sets of vectors of
natural numbers). The family of all recursively enumerable sets of natural numbers is
denoted by nRE.
The multisets over a given .nite support (alphabet) are represented by strings of

symbols. The order of symbols does not matter, because the number of copies of an
object in a multiset is given by the number of occurrences of the corresponding symbol
in the string. Clearly, using strings is only one of many ways to specify multisets.
We de.ne now a membrane system, which in addition to the most basic features

discussed in the Introduction uses also priority relations on evolution rules, and the
membrane dissolving capability.

Such a membrane system is called a P system, and it is a construct

� = (V; T; C; �; w1; : : : ; wm; (R1; �1); : : : ; (Rm; �m));

where
(i) V is an alphabet—its elements are called objects;
(ii) T ⊆V (the output alphabet);
(iii) C ⊆V − T (catalysts);
(iv) � is a membrane structure consisting of m membranes, with the membranes (and

hence the regions) injectively labeled by the elements of a given set H of m
labels (in this paper H = {1; 2; : : : ; m}); m is called the degree of �;

(v) wi; 16i6m, are strings which represent multisets over V associated with the
regions 1; 2; : : : ; m of �;

(vi) An evolution rule is a pair (u; v), which we will usually write in the form u→ v,
where u is a string over V and v= v′ or v= v′!, where v′ is a string over
{ahere; aout ; ainj | a∈V; 16j6m}, and ! is a special symbol not in V . The length
of u is called the radius of the rule u→ v.
Ri; 16i6m, are .nite sets of evolution rules over V—each Ri is associated with
the region i of �; �i is a partial order relation over Ri, called a priority relation
(on the rules of Ri).

To simplify the notation, the subscript “here” for letters (objects) in evolution rules
will be mostly omitted.
If � contains rules of radius greater than one, then we say that � is a system with

cooperation. Otherwise, it is a noncooperative system. A particular class of cooperative
systems is that of catalytic systems: the only rules of a radius greater than one are of
the form ca→ cv or ca→ cv!, where c∈C; a∈V − C, and v∈ (V − C)∗; moreover,
no other evolution rules contain catalysts (i.e., there are no rules of the form c→ v or
a→ v1cv2, with c∈C and a∈V − C).

80 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

Now since we have a priority relation and the dissolving capability, we have to
modify the description of the single macro-step of a computation in a membrane system
given in the Introduction.
To take into account the dissolving action ! we add as the last step the following

micro-step: for each region where a rule containing ! was used, the membrane enclosing
this region is removed, and consequently the objects of this region will belong now to
the region that was enclosing the dissolved membrane. Obviously, if the membrane of
this region was also dissolved, then the objects “travel” even further up. Since the skin
membrane is never dissolved, there is a limit to this travel. Note that the evolution
rules in each region are associated with this region, and so, if the region disappears
because the membrane enclosing the region is dissolved, then the associated evolution
rules also disappear.
To take care of the priority relation we modify the .rst micro-step as follows: an

object can be assigned to a rule only if no object can be assigned to a rule of a higher
priority. Hence, we have a competition for rule application and not a competition for
choosing perhaps the same objects.
The (m + 1)-tuple (�; w1; : : : ; wm) constitutes the initial con>guration of �. Since

we have the possibility of dissolving membranes, the system may enter a con.gu-
ration which will include only some of the initial membranes, Thus, any sequence
(�′; w′

i1 ; : : : ; w
′
ik), with �′ a membrane structure obtained by removing from � all mem-

branes di4erent from i1; : : : ; ik (of course, the skin membrane is not removed), with
w′

ij strings over V , 16j6k, and {i1; : : : ; ik}⊆{1; 2; : : : ; m}, is called a con>gura-
tion of �. Note that not every con.guration may be reachable through an evolu-
tion of the system. Also, note that if a membrane is present in two di4erent con-
.gurations, then it will have the same label, because labels are associated
with membranes (and never manipulated during an evolution of the
system).
For two con.gurations C1 = (�′; w′

i1 ; : : : ; w
′
ik); C2 = (�′′; w′′

j1 ; : : : ; w
′′
jl) of � we write

C1 ⇒C2, and we say that we have a transition from C1 to C2, if we can pass from
C1 to C2 by using the evolution rules from Ri1 ; : : : ; Rik in the regions i1; : : : ; ik .
We emphasize here the fact that when using a rule u→ v in the region it , copies of

the objects as speci.ed by u are “consumed” (removed), and the result of using the
rule is determined by v.
The macro-steps corresponding to the use of evolution rules are performed in parallel,

for all possible applicable rules u→ v, for all occurrences of multisets u in the regions
associated with the rules, for all regions, following the principles of nondeterminism
and maximal parallelism as discussed in the Introduction.
A sequence of transitions between con.gurations of a given P system � is called

a computation with respect to �. A computation is successful if and only if it halts,
that is, there is no rule applicable to the objects present in the last con.guration.
The result (output) of a successful computation is �T (w), where w describes the
multiset of objects from T sent out of the system during the computation (a non-
successful computation has no output). The set of such vectors �T (w) is denoted
by Ps(�) (“Ps” stands for “Parikh set”), and we say that it is generated by
�.

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 81

Fig. 3. The initial con.guration of � (with rules included).

We illustrate the above de.nitions with the following example. Consider the follow-
ing P system (of degree 3):

� = (V; T; C; �; w1; w2; w3; (R1; �1); (R2; �2); (R3; �3));

V = {a; b; d; e; f}; T = {e}; C = ∅;
� = [1[2[3]3]2]1;

w1 = %; R1 = {e → eout}; �1 = ∅;
w2 = %; R2 = {b → d; d → de; r1 : ff → f; r2 : f → !}; �2 = {r1 ¿ r2};
w3 = af; R3 = {a → ab; a → b!; f → ff}; �3 = ∅:

The initial con.guration of � (including the rules) is given in Fig. 3. No objects are
present in regions 1 and 2, and so no rules can be applied in these regions. Hence one
has to start in region 3, using the single copies of objects a and f.
If we iterate the use of rules a→ ab and f→ff, in parallel for all occurrences of

a and f currently available, then after n steps, n¿0, we get n occurrences of b and
2n occurrences of f. If we then use a→ b! instead of a→ ab (note that we always
have only one copy of a), then we get n+1 occurrences of b and 2n+1 occurrences of
f, and, moreover, we dissolve membrane 3 (and so region 3 disappears). This means
that all the occurrences of objects from region 3 become occurrences of objects from
region 2, the rules of region 3 are “lost” (removed), and the rules of region 2 can
now be applied to all occurrences of objects present in region 2. As dictated by the
priority relation, we have to use the rule ff→f as much as possible. In one step,
we transform bn+1 to dn+1, while the number of occurrences of f is halved. In the

82 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

Fig. 4. A computation in the P system � from the example.

next step, n + 1 occurrences of e are produced: each occurrence of d introduces one
occurrence of e. At the same time, the number of occurrences of f is halved again.
The priority relation ensures that this step must be iterated n times (each time pro-

ducing n+1 occurrences of e), and then the rule f→ ! must be used. Its use dissolves
membrane 2 (and so the rules of region 2 are removed), while the objects of region 2
become objects of the skin region, which contains only rules for e. Now, in one step,
all copies of this object will be sent out of the system, by using the rule e→ eout . No
further step is possible, and so the computation stops.
Fig. 4 illustrates a halting computation in �, for n=4.
Hence, for this computation the result is 42 = 16. More general, we send out of the

system (n+1)(n+1) copies of the object e, for some n¿0. Hence Ps(�)={(n2) | n¿1}.

4. Organizing communication

Communication between regions plays a central role in computations in P systems.
Such a communication consists of exchanging objects between regions, where the ex-
change is programmed by the use of addressing (subscripts of objects) here, out, and
inj which precisely indicates the region destination of objects introduced by evolution
rules. In particular, inj is a very powerful form of addressing: an object with this
subscript introduced in region i will enter region j only if region j is directly con-
tained in region i; otherwise an evolution rule using inj addressing cannot be used.
This “adjacency checking” is a powerful feature of programming computations in P
systems.

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 83

Fig. 5. The e4ect of actions !; '.

There are a number of ways of weakening the programming power provided by
inj.
The obvious way is to replace inj addressing by in addressing: if an object ain is

introduced in region i, then a will enter any of the adjacent lower regions, chosen
nondeterministically among all adjacent lower regions; if membrane i is elementary,
then rules using in addressing cannot be used.
The addressing using inj associates a speci.c object with a speci.c membrane (hence

a region). An alternative way, more speci.c than in and less speci.c than inj, is to
associate both with objects and membranes (electrical) charges of three sorts: +;−; 0
(positive, negative, neutral). The charges of membranes are given in the initial con.g-
uration, and they are not changed during computations, the charge of objects are given
explicitly by the evolution rules that introduce them. For example, the rule a→ b+d−

introduces one occurrence of b positively charged, and one negatively charged oc-
currence of d. A charged object will immediately go through one of the directly
adjacent lower membrane of the opposite charge, the neutral objects remain in the
same region or will exit it, depending on whether they have the subscript here or the
subscript out, respectively. After a charged object crosses a membrane, it becomes
neutral.
Another way of controlling the passage of objects through membranes is to con-

trol the permeability of membranes. It is well known that the permeability of (real
life) bio-membranes can be variable. This control of permeability is implemented in
P systems by the use of action ', which can increase the “thickness” of a mem-
brane making it impermeable. Together, actions ! and ' provide a very convenient
programming device to regulate the passage of objects through membranes. Let us as-
sume that initially all membranes have thickness 1. If a rule within a membrane of
thickness 1 introduces the symbol ', then the thickness of this membrane becomes
2. A membrane of thickness 2 does not become thicker through the use of other
rules which introduce the symbol ', however no object can pass through it. If a rule
which introduces the symbol ! is used within a membrane of thickness 1, then the
membrane is dissolved; if the membrane had thickness 2, then it returns to thick-
ness 1. If within the same step one uses rules which introduce both ! and ' in the
same membrane, then the membrane does not change its thickness. The cumulative
e4ect of the actions ! and ' are illustrated by the diagram in Fig. 5. It turns out
that the control of the membrane permeability is a very powerful computing tool (see
Section 5).

84 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

5. Universality

In this section we consider the computational power of our basic model, equipped
with the features discussed above.
The family of sets of vectors over natural numbers Ps(�) generated by P systems of

degree at most m¿1, with priority and catalysts, using target indications of the form
here, out, inj, and also using the actions !; ', is denoted by NPm(Pri; Cat; tar; !; ');
whenever one of the features)∈{Pri; Cat; !; '} is not used, we replace it with n).
Hence, e.g., NPm(nPri; Cat; tar; n!; n') denotes the family of sets of vectors over nat-
ural numbers generated by the most basic membrane systems discussed in the
Introduction.
When we use the communication commands here, out, in, then we replace tar with

i=o; when we use electrical charges, we write ± instead of tar.
The following theorem (based on the main results from [44,16]) is the basic univer-

sality result for P systems.

Theorem 5.1. PsRE=NP2(Pri; Cat; i=o; n!; n')=NP4(nPri; Cat; i=o; !; ').

The proofs of these equalities are based on a technique used in the proofs of many
universality results for P systems. It can be brieIy explained (for the reader familiar
with basic language theory) as follows. It is known that the recursively enumerable
languages are also generated by matrix grammars with appearance checking (ac), a
class of regulated context-free grammars already well investigated in the 1960s, see
[63,13]. Moreover, a binary normal form is valid for such grammars (see in [13,
Lemma 1.3.7]). The number of nonterminals which appear in rules which are used in
the ac mode can be bounded (by two—see [17], which has improved the bound six
from [43]). Starting from a matrix grammar G with appearance checking, in the binary
normal form, and with at most two nonterminals used in rules which can be applied in
the ac mode, we can construct a P system �G of the type (nPri; Cat; i=o; !; ') simulating
G and with only four membranes: the skin membrane and one inner membrane simu-
late the matrices without ac rules, while two further membranes can take care of the
two nonterminals which appear in matrices which contain ac rules, thus also simulating
these matrices—that is why four membranes su6ce. If priority relations among rules
are also used, then two membranes su6ce (even without using the membrane thick-
ness control). In either case, only weak addressing (using commands here, out, in)
is used.
The use of catalysts is very convenient in programming computations in P sys-

tems. Their main role is to keep the parallelism under control: we have to simu-
late a sequential device (a matrix grammar) in an inherently parallel framework (a
P system), hence we have to “inhibit” the parallelism, and this is done by using
(a limited number of) catalysts. When these catalysts have a sort of “short term
memory”, then even one membrane su6ces for obtaining universality. Each such
catalyst (called bi-stable) has two states, c and Oc, and they are used in rules of
the form ca→ Ocv and Oca→ cv (always changing from c to Oc and back). We write
2Cat instead of Cat in denoting the generated families of vector sets. The proof of

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 85

the following result (demonstrating the power of bi-stable catalysts) can be found
in [55].

Theorem 5.2. PsRE = NP1(nPri; 2Cat; i=o; n!; n').

6. Trading evolution for communication

Let us now consider, following [48,36], two “purely communicative” classes of
P systems, where the objects never change (never evolve)—they only pass through
membranes. Instead, the computations are implemented solely by the use of “transport
rules”, which control the passage of molecules through membranes. Since one needs
a supply of molecules (which in membrane systems are produced through evolving
rules), we assume that the environment always contains a su6cient amount of each
molecule that is needed.
The underlying idea of the .rst class of communicative P systems that we con-

sider (called P systems with linked transport) is based on the transport of molecules
by proteins through membranes. Biologists distinguish three classes of such trans-
port, [2]: uniport, symport, and antiport. Symport refers to the transport where two
molecules pass together through a membrane in the same direction—these molecules
need each other for the transport. Antiport refers to the transport where, again, two
molecules pass through a membrane simultaneously, but in opposite directions. The
case when a molecule does not need a “partner” for a passage is referred to as
uniport.
The only computational rules in P systems with linked transport are the transport

rules, which formalize and generalize the above ideas. Thus, a minimal symport rule
(associated with a membrane i) is of the form (ab; in) or (ab; out), stating that the
objects a and b enter=exit together membrane i, while a minimal antiport rule is of
the form (a; out; b; in), stating that, simultaneously, a exits and b enters membrane i.
In general, symport and antiport rules may involve synchronized transport of more
than two objects. Thus, symport rules may be of the form (x; in); (x; out), where x is
a string of any length, and antiport rules may be of the form (x; out;y; in), where x; y
are strings of any (nonnull) length.
The functioning of a P system with linked transport is de.ned in the usual way:

nondeterministic maximally parallel use of rules, halting computations, with the result
de.ned as the number of objects in a speci.c elementary membrane. The family of
sets of numbers computed in this way by these systems of degree at most m¿1,
using symport rules (x; in); (x; out) with |x|6p, and antiport rules (x; out;y; in) with
|x|; |y|6q is denoted by NPPm(symp; antiq).
Although at the .rst sight P systems which just move objects through membranes

may appear to be computationally weak, they turn out to be universal for various
combinations of the parameters m;p; q. The following results are from [48,34,35].

Theorem 6.1. nRE = NPP5(sym2; anti0) = NPP2(sym2; anti2) = NPP2(sym5; anti0) =
NPP3(sym4; anti0).

86 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

Thus, the universality is obtained even when only the minimal transport rules are
used—one needs then .ve membranes. The number of membranes may be decreased
if generalized transport rules are used—as a matter of fact, two membranes su6ce if
up to .ve molecules may be co-transported by symport rules; no antiport rules are
needed.
One can also characterize nRE using only minimal symport rules and only three

membranes, but with using also promoters=inhibitors (where promoters=inhibitors are
single objects which must be present=absent in order to allow an application of a
symport rule). Yet another way to ensure that minimal symport rules su6ce to gen-
erate nRE is to allow to control the permeability of membranes by actions ! and '
(as described in Section 4).
Another way of organizing computations by communication only is to use carriers.

The origin of this idea is twofold. It abstracts the work of the carrier proteins assisting
molecules to pass through membranes (see, e.g., [2]), and it also abstracts from the
fundamental idea of “vectors” used in gene cloning (see, e.g., [9]).
Thus, in membrane systems with carriers we have objects of two types: the carriers

(“vehicles”) and the passengers. None of them ever changes, and moreover the passen-
gers can pass through membranes only when carried by carriers. We also have objects
(both carriers and passengers) available in the environment. Rules to handle objects
(attaching=detaching carriers to=from passengers, and passing through membranes) are
associated with regions, and also with the environment. Otherwise, the functioning of
a membrane system with carriers is the same as an ordinary membrane system: rules
are applied in a nondeterministic maximally parallel manner, and transitions between
con.gurations yield computations.
It is also worth mentioning that in this case no object is created or destroyed,

only the location of the objects can be changed. Hence, the “conservation law” is
observed—which does not necessarily happen in other classes of P
systems.
The rules used in P systems with carriers are of the following four types (V is the

set of vehicle-objects and O is the set of passenger-objects):
• va1 : : : ak → [va1 : : : ak], for v∈V; a1; : : : ; ak ∈O; k¿1 (attaching rules);
• [va1 : : : ak]→ va1 : : : ak , for v∈V; a1; : : : ; ak ∈O; k¿1 (detaching rules);
• [va1 : : : ak]→ in, for v∈V; a1; : : : ; ak ∈O; k¿0 (carry-in rules);
• [va1 : : : ak]→ out, for v∈V; a1; : : : ; ak ∈O; k¿0 (carry-out rules);
where v is a carrier and a1; : : : ; ak are passengers. In the environment there are only
rules of the .rst three forms. The maximal number of passengers in any rule of a
system is called the carring index of the system.
The family of all sets Ps(�) computed by systems with carriers of degree at most

m¿1, using at most p¿1 carriers, and with the carrying index not exceeding k¿1, is
denoted by NCPm(p; k); when any of the parameters m;p; k is not limited, we replace
it by ∗.
The following results are from [36]. (Note that, again, two membranes su6ce, while

the carrying index is rather low.)

Theorem 6.2. PsRE=NCP2(3; 3)=NCP2(∗; 2).

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 87

7. Structuring objects (strings)

In a cell, many objects can be considered as being atomic (with no internal struc-
ture), but many other objects, such as, e.g., DNA molecules, have a structure, which,
sometimes, can be described by a string. This leads one to consider P systems where
objects are strings.
This points to a general observation=analogy: in Lindenmayer systems (see, e.g.,

[61,62]) the basic unit is a cell with no internal structure assigned to it; in P systems
that we have considered so far, one “zooms” into a cell, distinguishing the membrane
structure and the objects contained within its compartments. Now we will zoom one
level “deeper”: the objects will be structured (as strings). If we focus at this level of
abstraction, then we are again within the framework of formal language theory, and
when we choose splicing as the basic operation, then we are in the framework of H
systems (see, e.g., [19,51]).
It is natural, when working with string-objects, to use string processing rules as

evolution rules. We will consider .rst the simplest case, when the multiplicity is ignored
and we deal with formal languages in the classic sense.

7.1. P systems with rewriting

One natural way to process string-objects is to use rules of the form (X → v; tar),
where X → v is a usual context-free rule and tar is a target indication, one of here, out,
in, specifying in the standard way the region where the result of rewriting should go.
We can also append to v the symbols ! and ', which control the membrane thickness
in the way discussed in Section 4.
The structure and the functioning of a rewriting P system are de.ned in the usual

way, with the following additional observations: all strings are processed in parallel, but
each single string is rewritten by only one rule (the parallelism is maximal at the level
of strings and rules, but the rewriting is sequential at the level of the symbols from each
string). One begins with .nite sets of strings in each region, then one applies rewriting
rules, and collects the strings over the terminal alphabet which leave the system during a
computation—again only halting computations are considered successful. We denote by
RPm(Pri; i=o; !; ') the family of languages generated in this way by rewriting P systems
with at most m membranes, using priorities among the rewriting rules, target indications
here, out, in, and the actions !; '. As usual, we write n) instead of)∈{Pri; !; '}
whenever the corresponding feature is not used.
Here is a simple example. Consider the rewriting P system

� = (V; T; �;M1; M2; (R1; �1); (R2; �2));

V = {a; b; c; d; d′; e; e′}; T = {a; b; c};
� = [1[2]2]1;

M1 = {de}; M2 = ∅;
R1 = {(d → ad′b; here); (e → ce′; in); (d → ab; here); (e→ c; out)};

88 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

�1 = ∅;

R2 = {(d′ → d; out); (e′ → e; here)};

�2 = ∅:

Assume that we have a string of the form andbncme in the skin region, with n;
m¿0 (initially we have n=m=0). If we apply the rule (e→ ce′; in), then the string
andbncm+1e′ is sent to region 2, we apply then the rule (e′ → e; here), and the com-
putation halts without sending out any string. Thus, in the skin membrane we have to
use both rules (d→ ad′b; here) and (e→ ce′; in). The string an+1d′bn+1cm+1e′ is sent to
region 2. If we use here only the rule (d′ →d; out), then the string an+1dbn+1cm+1e′ is
sent to region 1, where we can use one of the rules (d→ ad′b; here) or (d→ ab; here),
but the computation halts again without producing any output. We have to use both
rules from region 2, hence we return to the skin membrane the string an+1dbn+1cm+1e.
The process can be iterated, resulting in the simultaneous increase of the number of
occurrences of symbols a; b; c. If in the skin region we use the rules (d→ ab; here) and
(e→ ce′; in), then again we cannot exit from the inner membrane. Also, if we send out
of the system a string by using the rule (e→ c; out) before using the rule (c→ ab; here),
then the string is not accepted because it contains the symbol d, which is not in T . In
this way we generate the noncontext-free language L(�)= {anbncn | n¿1}.
The following result is from [23,70].

Theorem 7.1. RE=RP2(Pri; i=o; n!; n').

The use of a priority relation can be avoided at the cost of controlling the membrane
thickness. This was .rst considered in [70,69], where a characterization of RE has been
given, using systems without a bound on the number of membranes. The following
result is from [16].

Theorem 7.2. RE=RP4(nPri; i=o; !; ').

One can combine the rewriting of strings with their duplication. A rewriting–
replication rule (see [24]) is of the form r : X → (u1; tar1)‖ · · · ‖(un; tarn). To apply
r to a string w one replaces one occurrence of X in w by u1, by u2, and so on, in
a context-free manner (i.e., X is replaced and the rest of w is just replicated). Thus,
this rewriting yields n strings, w1u1w2; : : : ; w1unw2, where w=w1Xw2. As usual, these
n strings are sent to regions as indicated by the targets tar1; : : : ; tarn, respectively.
The family of all languages L(�), generated by rewriting–replicating systems � of

degree at most m¿1 is denoted by RRPm(i=o) (no further feature is used, such as
Pri; !; '). The following characterization of RE is from [28].

Theorem 7.3. RE=RRP6(i=o).

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 89

7.2. P systems with splicing

An attractive variant is to process the string-objects by the splicing operation, in-
troduced in [19] as a formal model of DNA recombination under the inIuence of
restriction enzymes and ligases (see [51] for a comprehensive investigation of splicing
systems).
Consider an alphabet V and two symbols #; $ not in V . A splicing rule over

V is a string r = u1#u2$u3#u4, where u1; u2; u3; u4 ∈V ∗. For such a rule r and for
x; y; w; z ∈V ∗ we de.ne

(x; y) �r (w; z) i4 x= x1u1u2x2; y = y1u3u4y2;

w= x1u1u4y2; z = y1u3u2x2;

for some x1; x2; y1; y2 ∈ V ∗:

(One cuts the strings x; y in between u1; u2 and u3; u4, respectively, and then recombines
the fragments obtained in this way.)
In a splicing P system �, the rules are given in the form (r; tar1; tar2), where

r= u1#u2$u3#u4 is a splicing rule over V , and tar1; tar2 ∈{here; out; in}.
As usual in splicing systems, when a string is present (in a region of �), it is

assumed to appear in arbitrarily many copies.
The transitions among con.gurations of a splicing P system are de.ned by apply-

ing the splicing rules from each region, in parallel, to all possible strings from the
region, and following the target indications associated with the rules. More speci.-
cally, if x; y are from region i and (r = u1#u2$u3#u4; tar1; tar2) is a rule from region
i such that we can have (x; y) �r (w; z), then w and z will go to the regions indi-
cated by tar1; tar2, respectively. Note that the strings x; y are still available in region
i, because we have assumed that they appear in arbitrarily many copies (an arbi-
trarily large number of them were spliced, arbitrarily many remain). However, if a
string w; z obtained by splicing is sent out of region i, then no copy of it remains in
region i.
The result of a computation consists of all strings which are sent out of the system

at any time during the computation (here we do not work with halting computations,
because the computations which contain at least one transition never halt, due to the
assumption that the strings are not consumed by splicing). We denote by SPm(i=o) the
family of languages generated in this way by splicing P systems of degree at most
m;m¿1.
Splicing P systems with three membranes either arranged in two levels or in three

levels, were shown in [55] to characterize the recursively enumerable languages. The
following result from [50] shows that two membranes su6ce.

Theorem 7.4. RE= SP2(i=o).

90 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

7.3. Counting the copies of string-objects

We will consider now P systems handling multisets of strings, and where the result
of a computation is the number of strings sent out of the system during a halting com-
putation, and not the strings themselves. The number of copies of strings is important,
so therefore we need to consider operations on strings which can increase this number
(we do not also need operations which decrease the number of strings, because we
can achieve this by storing strings in certain membranes, which can act as “garbage
collectors”).
The operations that we will use are replication, as de.ned at the end of Section 7.1,

and splitting. If a∈V and u1; u2 ∈V+, then r : a→ u1|u2 is called a splitting rule. For
strings w1; w2; w3 ∈V+ we write w1 ⇒r (w2; w3) (and we say that w1 is split by rule r)
if w1 = x1ax2; w2 = x1u1; w3 = u2x2, for some x1; x2 ∈V ∗.
P systems with multisets of string-objects, processed by rewriting, replication (into

two new strings), splitting, and recombination=crossover (for z; w1; w2; w3; w4 ∈V+,
we write (w1; w2)⇒z (w3; w4) if w1 = x1zx2; w2 =y1zy2, and w3 = x1zy2; w4 =y1z x2,
for some x1; x2; y1; y2 ∈V ∗) were considered in [11].
These rules have associated targets here, out, in for the resulting strings (two in

the case of replication, splitting, and recombination, and one in the case of rewriting),
and they are applied as usual in P systems. A string which enters an operation is
“consumed” by that operation, its multiplicity is decreased by one. The multiplicity of
strings produced by an operation is increased accordingly. A string is processed by one
operation only. For instance, we cannot apply two rewriting rules, or a rewriting rule
and a replication rule, to the same string.
The result of a halting computation consists of the number of strings sent out

of the system during the computation. We denote by NWPm(i=o) the sets of num-
bers computed by all P systems of this type, using in, out, here addressings
(in [11] they were called P systems with worm-objects, following the terminology
of [64], where similar operations were used) with at most m¿1
membranes.
The following result is from [32].

Theorem 7.5. nRE=NWP6(i=o).

Going further, we can now consider systems with a combination of operations. An
example of such a system is a P system with worm-objects, taking as the result of
a computation the strings themselves sent out of the system rather than their number
(that is, we work with multisets of strings, but we generate languages, not sets of
numbers). The case when rewriting and crossover operations are used was considered
in [33]. We denote by RXPm(i=o) the family of languages generated by P systems with
at most m¿1 membranes using these operations. The proof of the following result can
be found in [33].

Theorem 7.6. RE=RXP5(i=o).

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 91

8. Trading time for space

We now address the important issue of the computing e6ciency of P systems.
An important theorem from [68] says that each deterministic P system of the type

(Cat; Pri; tar; !; ') (hence working with symbol-objects, and using all features: catalysts,
priorities, the control of membrane thickness, and addressing by inj) can be simulated
by a deterministic Turing machine with a polynomial slowdown. This means that by
using such systems we cannot solve exponential problems in polynomial time, in spite
of the fact that exponentially many objects can be produced in linear time, for instance,
by rules of the form a→ aa. Therefore, in order to improve the computational perfor-
mance of our systems it is necessary to provide more e6cient ways for producing an
exponential space. Three such ways will be discussed in the following subsections.

8.1. Dividing membranes

One possibility to get exponential space is to consider membrane division (and this
also corresponds to a common biological phenomenon). This feature was considered in
[47] for systems with active membranes, where the membranes themselves are involved
in rules. We recall the de.nition in a restricted form (considered in [42]).
A P system with active membranes, is a construct �=(V;H; �; w1; : : : ; wm; R), where
(i) m¿1;
(ii) V is the alphabet of the system;
(iii) H is a .nite set of labels for membranes;
(iv) � is a membrane structure, consisting of m membranes labeled with elements of

H and having a neutral charge (initially, all membranes are neutrally charged);
(v) w1; : : : ; wm are strings over V , describing the multisets of objects placed in the m

regions of �;
(vi) R is a .nite set of rules, of the following forms:

(a) [ha→ v])h, for h∈H; a∈V; v∈V ∗,)∈{+;−; 0} (object evolution rules),
(b) a[h])h → [hb]

5
h , where a; b∈V; h∈H;); 5∈{+;−; 0} (an object is introduced

in membrane h),
(c) [ha])h → [h]

5
hb, for h∈H;); 5∈{+;−; 0}; a; b∈V (an object is sent out of

membrane h),
(d) [ha])h → b, for h∈H;)∈{+;−; 0}; a; b∈V (membrane h is dissolved),
(e) [ha]

)1
h → [hb]

)2
h [hc]

)3
h , for h∈H an elementary membrane,)1;)2;)3 ∈{+;

−; 0}, a; b; c∈V
(2-division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, maybe of
di4erent polarity; the object speci.ed in the rule is replaced in the two new
membranes by possibly new objects; all other objects are duplicated in the
two new copies of the membrane).

The rules are used as usual in a P system, in a maximally parallel manner: in each
time unit, all objects which can evolve, have to evolve. Each copy of an object and
each copy of a membrane can be used by only one rule, with the exception of rules

92 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

of type (a), where we count only the involved object, not also the membrane. That
is, if we have several objects a in a membrane i and a rule [ia→ v])i , then we use
this rule for all copies of a, irrespective of how many there are; we do not consider
that the membrane was used—note that its electrical charge is not changed. However,
if we have a rule [ia])i → [i]5i b, then this counts as using the membrane, no other
rule of types (b)–(e) which uses the same membrane can be applied at the same
time. When dissolving a membrane, its contents becomes a part of the contents of the
directly surrounding membrane; when dividing a membrane, its contents are replicated
in the two obtained membranes. Only elementary membranes can be divided. The skin
membrane can neither dissolve nor divide, but it can be “electrically charged”. During
a computation, objects can leave the system (by using rules of type (c)).
A natural extension is to allow also the division of nonelementary membranes by

rules of the form [ha]
)1
h → [hb]

)2
h [hc]

)3
h ; in such a case, not only the objects from the

former membrane, but also the membranes present in it are replicated in the two newly
obtained membranes. Such a rule is said to be of type (e′).
The family of all sets of vectors Ps(�), computed by systems which use simul-

taneously at most n membranes, and using rules of the forms (a); : : : ; (e) is denoted
by NAPn((a); : : : ; (e)); (e) is replaced by (e′) if nonelementary membranes can be di-
vided. When a type of rule is not used, we remove the corresponding index from the
list (a); : : : ; (e)=(e′).
The proof of the following result can be found in [16].

Theorem 8.1. PsRE=NAP4((a); (b); (c)).

More signi.cant than this (expected) result is the following one, from [42].

Theorem 8.2. The Hamiltonian Path Problem (HPP) can be solved in quadratic
time and the SAT problem can be solved in linear time by P systems with active
membranes, using rules of the forms (a); : : : ; (d); (e′).

Similar results are given in [47], but also using the possibility of dividing a mem-
brane under the inIuence of inner membranes, not only under the inIuence of an
object, as in rules of types (e) and (e′). In [22] one considers the possibility of divid-
ing a membrane in an arbitrary number of copies (not only two), and solutions to the
HPP and the Node Covering Problem in that framework were proposed. The proofs
are based on constructing a P system associated with a graph and generating all paths
from a speci.ed initial node to a speci.ed .nal node, then checking whether or not
at least one of these paths is Hamiltonian. This directly corresponds to the way HPP
is solved in [1], but here the generation of all paths takes a quadratic time, because
both the number of nodes and the maximal outdegree of the graph count. As in [25],
we can then reduce SAT to a problem of paths in a graph with each node having the
outdegree two, and so we obtain a linear time solution to this problem.
SAT is also considered in [40]; in [39], the same author considers the problem of

inverting one-way functions by using P systems with membrane division.

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 93

8.2. Replicating strings

Another powerful way to obtain exponential space su6cient for solving NP-complete
problems in polynomial time is to use the replication of string-objects, as considered
in P systems with replicated rewriting (as in Theorem 7.3) and in systems with worm-
objects. It was proved in [11,24] that HPP and SAT can be solved in linear time by
such systems. (If the replication produces only two new strings, then HPP requires a
quadratic time—see [11].)
The replication of strings can be obtained not only in a “direct” way, by replicating

rules as mentioned above, but also in an “indirect” manner, starting from a conditional
way of communicating objects through membranes. The basic idea is to consider certain
predicates on strings and communication rules of the form (7; inj); (7; out), with the
meaning that if 7(w)= true, then the string w must follow the addressings inj; out. A
variant is to send the string w to one of these targets, nondeterministically choosing
it, but we may also choose to send the string to all membranes for which a predicate
holds true. That is, we replicate the string in as many copies as many communication
predicates are true.
Predicates for controlling the string-object communication were considered in [7], but

without investigating the computational e6ciency of the replication. This was done in
[31], for the so-called P systems with valuations, introduced in [30]: a morphism from
symbols to integer numbers assigns “valuations” to strings; the sign of this valuation is
interpreted as an electrical charge and used for communicating the string as discussed
in Section 4 (a string of a given polarization goes to a membrane of the opposite
polarization, while the neutral strings remain in the same membrane). When a string
can go to several adjacent membranes (for instance, it has polarity + and there are
several adjacent membranes with polarity −), then the string is replicated and copies
of it are sent to all targets. As expected, by using this idea, polynomial solutions of
NP-complete problems can be devised; this is illustrated in [31] by SAT and HPP.

8.3. Creating membranes

An interesting way for obtaining exponential space is by using the possibility of
creating new membranes. For instance, rules of the form a→ [ib]i can be used, where
a and b are symbol-objects and i is the label of a membrane, from a given list of
possible membranes (this is important, because by knowing the label, we know the
rules to be applied in the associated membrane). Such rules for creating membranes
were considered in [21], where a characterization of Parikh images of ET0L languages
is obtained in this way, but they can also be used for producing an exponential space
for computations. We illustrate this with the HPP, giving full details, in order to let
the reader see an example of a “P algorithm”.
Consider a graph g=(N; E) with the nodes N = {a1; a2; : : : ; an}. In order to decide

whether a Hamiltonian path exists which starts in a1 and ends in an we construct the
P system � with the membrane structure �= [0[1]1]0 (the skin membrane is labeled
by 0, and it contains a unique membrane, with label 1), with the object (a1; 1) present

94 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

in membrane 1, using the following alphabet of objects:

V = {(ai; j); (a′i ; j) | 16 i; j 6 n} ∪ {M ⊆ N |M �= ∅}

(notice that the subsets of N are interpreted as symbol-objects); the possible membranes
are labeled by 0; 1; 2; : : : ; n− 1, and the associated sets of rules are as follows:

R0 = {N →yesout};

Ri = {(ai; j)→ (a′k1 ; j + 1) : : : (a′ksi ; j + 1) | (ai; akr) ∈ E; for all

16 r 6 si; si ¿ 1; and 16 j 6 n− 1}

∪ {(a′k ; j) → [k(ak ; j)]k | 16 k; j 6 n− 1}

∪ {(a′n; n) → {an}}

∪ {M → (M ∪ {ai})out |M ⊆ N}; for all i = 1; 2; : : : ; n− 1:

The idea behind this construction is the following. The tuple symbols (ai; j) encode the
fact that we have reached node ai on a path starting in a1 which has already passed
through j nodes. Each object (ai; j) introduces as many objects of the form (a′k ; j+1)
as many successors of ai exist in the graph. Then, each object (a′k ; j + 1) creates a
membrane with label k. That is, the paths we create are encoded in the membrane
structure (all the paths in the graph g consisting of at most n nodes are “recorded”
as paths from the root to the leaf nodes of the tree describing the membrane structure
of �). When we reach the node an or the paths already containing n nodes, this
process (it takes 2(n−1)−1 steps) is .nished, and we pass to the second phase of the
computation, that of checking whether or not among the generated paths there is one
which is Hamiltonian. This process can start only from object (a′n; n), that is, only if we
have reached node an after passing through exactly n nodes. After producing an object
of the form of a subset of N (at the .rst step, this is {an}), we exit the membranes,
one by one; when we exit membrane i we add the node ai to the current set of nodes.
In this way, after at most n steps (one for passing from (a′n; n) to {an}, and n− 1 for
other nodes), we reach the skin membrane with several objects of the form M ⊆N .
Only N can exit the skin membrane, sending out the message yes, that is, we have an
output (after 3n−2 steps) if and only if the graph g contains a Hamiltonian path from
a1 to an.
The results from this subsection and from Sections 8.2 and 8.3 have a special sig-

ni.cance in view of the theorem from [68] cited above: when we have exponentially
many symbol-objects placed in a bounded number of membranes we can simulate the
system by a Turing machine of a similar e6ciency (with a polynomial slowdown);
when one uses an exponential number of string-objects placed in a bounded number of
membranes, or an exponential number of objects placed in an exponential number of
membranes this is no longer true. We can “explain” these results by the much greater

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 95

quantity of information stored in a string or in a membrane structure than in a multiset
of symbol objects.

9. Discussion

In this paper we have outlined the basic framework for membrane computing.
We have introduced, and discussed a number of programming features and a num-
ber of results that are representative for membrane computing. The research in this
area is very active now. The current bibliography (November 2001) includes about
150 papers, with some of them motivated by the properties of bio-membranes, and
some of them motivated by formal properties of P systems. We will mention now,
in a telegraphic style, some interesting notions and results not discussed
above.
For instance, two natural operations are: to merge membranes and to move mem-

branes through other membranes. The .rst operation can be done by rules of the form
[i]i[j]j → [k]k ; the e4ect of such a rule is that the contents of membranes i and j
are put together in a new membrane, with the label k. Knowing the label k, we also
know the rules which can be applied in the region of membrane k. The merge op-
eration was .rst considered in [20], where several DNA computing experiments done
by Head and his collaborators were interpreted as membrane computations. Actually,
in [20] also several other operations on membranes were considered: divide, create,
separate (the string-objects which satisfy a given property are encapsulated in a new
membrane, created inside the membrane currently in use). More about such operations
can be found in [29].
The operation of moving a membrane, together with its contents, through another

membrane, corresponds to the biological operations of endocytosis and fagocytosis, and
it was considered in [3] in the framework of P systems with active membranes, as a
way of avoiding the division of membranes under the inIuence of inner membranes
(this is a type of rule which we have not considered in Section 8.1, but it is considered
in [47,22] and in other papers).
One of the most important ways of moving chemicals through bio-membranes is

based on concentration di4erences between adjacent regions. This idea was formalized
in [14], but only results for the case of using bi-stable catalysts were given.
Another variant which has a good motivation is that of systems with energy account-

ing: integer numbers are associated with rules, expressing “quanta of energy” produced
or consumed when applying these rules; at each step, we can use a combination of
rules only if the total energy in each region is positive; one starts with zero units of
energy in the system, and the energy remaining from an application of a step is passed
to the next step; however, if the total energy within a membrane is bigger than the
threshold associated (in advance) with the membrane, then the membrane is dissolved
(and all its energy consumed in this way). Again, characterizations of PsRE are ob-
tained, either with a small number of membranes or a small total quantity of energy
present in the system at any time, [54]; it seems that a trade-o4 between these two
parameters holds.

96 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

In the systems discussed in this paper we have considered membrane structures which
correspond to trees. An attractive generalization is to consider arbitrary graphs (in such
a case, the “regions” associated with the nodes do not necessarily have a spatial coun-
terpart in the form of a membrane structure—unless we consider direct communication
among regions, corresponding to the inter-cellular communication through common
protein channels, see [2,26]). Such variants were considered in [53], where charac-
terizations of PsRE were given through P systems using planar graphs with one-way
communication among regions.
In [15] and in a series of subsequent papers, one considers P systems with a se-

quential use of rules; this makes the use of catalysts unnecessary, hence “purely non-
cooperative” characterizations of recursively enumerable sets of numbers are obtained.
An important direction of research concerns the normal forms, mainly with respect

to the membrane structure—such results are useful because certain membrane struc-
tures are easier to handle. Most of the normal forms are motivated by mathematical
considerations, but some of them have also biological interpretations. Some normal
forms deal with the number and the structure of rules present in each membrane—see
[70].
The problem of proving correctness of computations in P systems is addressed in

[57,58], where the use is made of a detailed formalization of P systems from [59].
Several papers have considered the implementation of P systems on an electronic

computer, either on the existing media or on a purposely designed architecture. The
former approach is discussed in [5,12,27,67], and the latter in [65]. A de.nite assess-
ment of these attempts is premature, but up to now, no result of practical signi.cance
was obtained.
This leads to considerations concerning the signi.cance of P systems (for biology, for

mathematics, and for computing). The approach is clearly motivated from a mathemati-
cal point of view, not only because it is natural to (try to) model the cell computational
behavior, but also because the new computing model has a number of intrinsically in-
teresting features. Examples of such features are: the use of multisets, the inherent
parallelism, the possibility of devising computations which can solve exponential prob-
lems in polynomial time (by making use of an exponential space created in a natural
manner). At this moment, all these features are only potentially useful from a practical
computational point of view. How should the implementation problem be approached?
Should one try to develop, in lab, wet membrane computers (as this happens now in
DNA computing), or should one try to implement P systems on electronic computers?
The latter approach has a long and quite successful tradition in Natural Computing:
Neural Networks and Evolutionary Programming are also biologically inspired, and
they led to new computing paradigms of a de.nite practical use when implemented on
the traditional (in silico) computers. Maybe, this will also be the case for membrane
computing, possibly implemented on a devoted architecture, speci.cally designed for
P systems.
Anyway, it is clear already now that the idea of computing with membranes is

fruitful from a theory of computation point of view. The long list of notions and
results discussed in this paper is continuously growing, and, perhaps more importantly,
it is accompanied by a long list of open problems and topics for further research. A list

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 97

of some research topics was given in [46], many more can be found on the web page
(for the address see the footnote in the abstract of this paper). It is perhaps important
to realize that the research in P systems is driven by three seemingly contradictory
goals: to get P systems as realistic as possible (from a biochemical point of view,
or from a possible implementation point of view), as powerful as possible, and as
eDcient as possible. Moreover, one aims at the models that are (mathematically and
computationally) as elegant as possible. It is our expectation that the .eld will Iourish,
hopefully reaching some of these goals.
Finally, we want to point out that some of the papers listed below are not referred

in the text—they are included in order to provide the reader with a broader access to
the existing literature.

Acknowledgements

The authors gratefully acknowledge the support of the ESPRIT Working Group
APPLIGRAPH.

References

[1] L.M. Adleman, Molecular computation of solutions to combinatorial problems, Science 226 (1994)
1021–1024.

[2] B. Alberts, et al., Essential Cell Biology. An Introduction to the Molecular Biology of the Cell, Garland
Publ. Inc., New York, London, 1998.

[3] A. Atanasiu, C. Martin-Vide, Recursive calculus with membranes, Fund. Inform., 49 (2002) 45–59.
[4] J.P. Banâtre, A. Coutant, D. Le Metayer, A parallel machine for multiset transformation and its

programming style, Future Generation Comput. Systems 4 (1988) 133–144.
[5] A.V. Baranda, J. Castellanos, R. Molina, F. Arroyo, L.F. Mingo, Data structures for implementing

transition P systems in silico, Pre-proc. Workshop on Multiset Processing, Curtea de ArgeVs, Romania,
TR 140, CDMTCS, University of Auckland, 2000, pp. 21–34.

[6] G. Berry, G. Boudol, The chemical abstract machine, Theoret. Comput. Sci. 96 (1992) 217–248.
[7] P. Bottoni, A. Labella, C. Martin-Vide, Gh. P%aun, Rewriting P systems with conditional communication,

in: W. Brauer, H. Ehrig, I. KarhumXaki, A. Salomaa (Eds.), Formal and Natural Computing. Essays
Dedicated to Gregorz Rozenberg, Lecture Notes in Computer Science 2300. Springer, Berlin. 2002,
pp. 325–353.

[8] P. Bottoni, C. Martin-Vide, Gh. P%aun, G. Rozenberg, Membrane systems with promoters=inhibitors,
2000, submitted for publication.

[9] T.A. Brown, Gene Cloning. An Introduction, Chapman & Hall, London, 1996.
[10] C. Calude, Gh. P%aun, Computing with Cells and Atoms, Taylor & Francis, London, 2000.
[11] J. Castellanos, A. Rodriguez-Paton, Gh. P%aun, Computing with membranes: P systems with

worm-objects, IEEE 7th Internat. Conf. on String Processing and Information Retrieval, SPIRE, La
Coruna, Spain, 2000, pp. 64–74.

[12] G. Ciobanu, D. Paraschiv, Membrane software. A P system simulator, Pre-proc. Workshop on Membrane
Computing, Curtea de ArgeVs, Romania, August 2001, Technical Report 17=01 of Research Group on
Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain, 2001, pp. 45–50.

[13] J. Dassow, Gh. P%aun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.
[14] J. Dassow, Gh. P%aun, Concentration controlled P systems, Acta Cybernet. 15 (1) (2001) 9–25.
[15] R. Freund, Sequential P systems, Workshop on Multiset Processing, Curtea de ArgeVs, Romania, 2000,

and Theorietag 2000, in: R. Freund (Ed.), Workshop on New Computing Paradigms, TU University,
Vienna, 2000, pp. 177–183.

98 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

[16] R. Freund, C. Martin-Vide, Gh. P%aun, Computing with membranes: three more collapsing hierarchies,
2000, submitted for publication.

[17] R. Freund, Gh. P%aun, On the number of non-terminals in graph-controlled, programmed, and matrix
grammars, in: M. Margenstern, Y. Rogozhin (Eds.), Proc. Conf. Universal Machines and Computations,
ChiVsin%au, 2001, LNCS 2055, Springer, Berlin, 2001, pp. 214–225.

[18] P. Frisco, H.J. Hoogeboom, P. Sant, A direct construction of a universal P system, Fund. Inform.
49 (2002) 103–122.

[19] T. Head, Formal language theory and DNA: an analysis of the generative capacity of speci.c
recombinant behaviors, Bull. Math. Biol. 49 (1987) 737–759.

[20] T. Head, Aqueous computations as membrane computations, Romanian J. Inform. Sci. Technol. 5
(2002).

[21] M. Ito, C. Martin-Vide, Gh. P%aun, A characterization of Parikh sets of ET0L languages in terms of P
systems, in: M. Ito, Gh. P%aun, S. Yu (Eds.), Words, Semigroups, and Transducers, World Scienti.c,
Singapore, 2001, pp. 239–254.

[22] S.N. Krishna, R. Rama, A variant of P systems with active membranes: solving NP-complete problems,
Romanian J. Inform. Sci. Technol. 2 (4) (1999) 357–367.

[23] S.N. Krishna, R. Rama, On the power of P systems with sequential and parallel rewriting, Internat.
J. Comput. Math. 77 (1–2) (2000) 1–14.

[24] S.N. Krishna, R. Rama, P systems with replicated rewriting, J. Automata, Languages, Combin. 6 (2001)
345–350.

[25] R.J. Lipton, Using DNA to solve NP-complete problems, Science 268 (1995) 542–545.
[26] W.R. Loewenstein, The Touchstone of Life, Molecular Information, Cell Communication, and the

Foundations of Life, Oxford University Press, New York, Oxford, 1999.
[27] M. MalitVa, Membrane computing in Prolog, Pre-proc. Workshop on Multiset Processing, Curtea de

ArgeVs, Romania, TR 140, CDMTCS, University of Auckland, 2000, pp. 159–175.
[28] V. Manca, C. Martin-Vide, Gh. P%aun, On the power of P systems with replicated rewriting, J. Automata,

Languages, Combin. 6 (2001) 359–374.
[29] M. Margenstern, C. Martin-Vide, Gh. P%aun, Computing with membranes; variants with an enhanced

membrane handling, Proc. 7th Internat. Meeting on DNA Based Computers, Tampa, FL, 2001.
[30] C. Martin-Vide, V. Mitrana, P systems with valuations, in: I. Antoniou, C.S. Calude, M.J. Dinneen

(Eds.), Unconventional Models of Computation, Springer, London, 2000, pp. 154–166.
[31] C. Martin-Vide, V. Mitrana, Gh. P%aun, On the power of P systems with valuations, Computacion

Sistemas 5 (2001) 120–127.
[32] C. Martin-Vide, Gh. P%aun, Computing with membranes, One more collapsing hierarchy, Bull. EATCS

72 (2000) 183–187.
[33] C. Martin-Vide, Gh. P%aun, String objects in P systems, Proc. Algebraic Systems, Formal Languages

and Computations Workshop, Kyoto, 2000, RIMS Kokyuroku, Kyoto University, 2000, pp. 161–169.
[34] C. Martin-Vide, A. P%aun, Gh. P%aun, G. Rozenberg, Membrane systems with coupled transport:

universality and normal forms, 2001, Fundamenta Informaticae 49 (2002) 1–15.
[35] C. Martin-Vide, A. P%aun, Gh. P%aun, On the power of P systems with symport rules, J. Univ. Comput.

Sci. 8 (2002) 317–331.
[36] C. Martin-Vide, Gh. P%aun, G. Rozenberg, Membrane systems with carriers, Theoret. Comput. Sci., 270

(2002) 779–796.
[37] M. Mutyam, K. Krithivasan, Inter-membrane communication in P systems, Romanian J. Inform. Sci.

Technol. 4 (1–2) (2001).
[38] M. Mutyam, K. Krithivasan, P systems with active objects: universality and e6ciency, in: M.

Margenstern, Y. Rogozhin (Eds.), Proc. Conf. Universal Machines and Computations, ChiVsin%au,
Springer, Berlin, 2001.

[39] A. Obtulowicz, Membrane computing and one-way functions, Internat. J. Found. Comput. Sci. 12 (4)
(2001) 551–558.

[40] A. Obtulowicz, Deterministic P systems for solving SAT problem, Romanian J. Inform. Sci. Technol.
4 (1–2) (2001).

[41] A. Obtulowicz, On P systems with active membranes solving integer factorizing problem in a polynomial
time, in: C.S. Calude, Gh. P%aun, G. Rozenberg, A. Salomaa (Eds.), Multiset Processing. Mathematical,

G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100 99

Computer Science, and Molecular Computing Points of View, Lecture Notes in Computer Science,
Vol. 2235, Springer, Berlin, 2001.

[42] A. P%aun, On P systems with membrane division, in: I. Antoniou, C.S. Calude, M.J. Dinneen (Eds.),
Unconventional Models of Computation, Springer, London, 2000, pp. 187–201.

[43] Gh. P%aun, Six nonterminals are enough for generating each r.e. language by a matrix grammar, Internat.
J. Comput. Math. 15 (1984) 23–37.

[44] Gh. P%aun, Computing with membranes, J. Comput. System Sci. 61(1) (2000) 108–143. (See also Turku
Center for Computer Science-TUCS Report No. 208, 1998, www.tucs..)

[45] Gh. P%aun, Computing with membranes—a variant: P systems with polarized membranes, Internat.
J. Found. Comput. Sci. 11 (1) (2000) 167–182.

[46] Gh. P%aun, Computing with membranes (P systems): twenty six research topics, Auckland University,
CDMTCS Report No. 119, 2000 (www.cs.auckland.ac.nz/ CDMTCS).

[47] Gh. P%aun, P systems with active membranes: attacking NP complete problems, J. Automata, Languages
and Combinatorics 6 (1) (2001) 75–90.

[48] A. P%aun, Gh. P%aun, The power of communication: P systems with symport=antiport, New Generation
Comput., to appear.

[49] A. P%aun, Gh. P%aun, A. Rodriguez-Paton, Further remarks on P systems with symport rules, Annals Al.I.
Cuza University, Iassy, Mathematics-Informatics Series, 2001.

[50] A. P%aun, M. P%aun, On membrane computing based on splicing, in: C. Martin-Vide, V. Mitrana (Eds.),
Where Mathematics, Computer Science, Linguistics, and Biology Meet, Kluwer Academic Publishers,
Dordrecht, MA, 2001, pp. 409–422.

[51] Gh. P%aun, G. Rozenberg, A. Salomaa, DNA Computing, New Computing Paradigms, Springer, Berlin,
1998.

[52] Gh. P%aun, G. Rozenberg, A. Salomaa, Membrane computing with external output, Fund. Inform. 41 (3)
(2000) 259–266.

[53] Gh. P%aun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted forms, Publ. Math. Debrecen,
to appear.

[54] Gh. P%aun, Y. Suzuki, H. Tanaka, P systems with energy accounting, Internat. J. Comput. Math. 78
(2001) 343–364.

[55] Gh. P%aun, T. Yokomori, Membrane computing based on splicing, in: E. Winfree, D. Gi4ord (Eds.),
Pre-proc. 5th Internat. Meeting on DNA Based Computers, MIT, Cambridge, MA, June 1999,
pp. 213–227.

[56] Gh. P%aun, S. Yu, On synchronization in P systems, Fund. Inform. 38 (4) (1999) 397–410.
[57] M.J. Perez-Jimenez, F. Sancho-Caparrini, Verifying a P system generating squares, Romanian D. Inform.

Sci. Tech. 5 (2002) 181–191.
[58] M.J. Perez-Jimenez, F. Sancho-Caparrini, Computing a partial mapping by P systems: design and

veri.cation, 2001, submitted for publication.
[59] M.J. Perez-Jimenez, F. Sancho-Caparrini, A formalization of transition P systems, Fund. Inform., 49

(2002) 261–272.
[60] I. Petre, A normal form for P systems, Bull. EATCS 67 (1999) 165–172.
[61] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980.
[62] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Heidelberg, 1997.
[63] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
[64] M. Sipper, Studying arti.cial life using a simple, general cellular model, Artif. Life J. 2 (1) (1995)

1–35.
[65] Gh. SV tefan, Membrane computation with cellular automata, on a dedicated hardware, Workshop on

Multiset Processing, Curtea de ArgeVs, Romania, August, 2000.
[66] Y. Suzuki, H. Tanaka, Arti.cial life and P systems, Pre-proc. Workshop on Multiset Processing, Curtea

de ArgeVs, Romania, TR 140, CDMTCS, University Auckland, 2000, pp. 265–285.
[67] Y. Suzuki, H. Tanaka, On a LISP implementation of a class of P systems, Romanian J. Inform. Sci.

Technol. 3 (2) (2000) 173–186.
[68] Cl. Zandron, Cl. Ferretti, G. Mauri, Solving NP-complete problems using P systems with active

membranes, in: I. Antoniou, C.S. Calude, M.J. Dinneen (Eds.), Unconventional Models of Computation,
Springer, London, 2000, pp. 289–301.

http://www.tucs.fi
http://www.cs.auckland.ac.nz/

100 G. P7aun, G. Rozenberg / Theoretical Computer Science 287 (2002) 73–100

[69] Cl. Zandron, Cl. Ferretti, G. Mauri, Using membrane features in P systems, Pre-proc. Workshop on
Multiset Processing, Curtea de ArgeVs, Romania, TR 140, CDMTCS, University of Auckland, 2000,
pp. 296–320.

[70] Cl. Zandron, G. Mauri, Cl. Ferretti, Universality and normal forms on membrane systems, in: R. Freund,
A. Kelemenova (Eds.), Proc. Internat. Workshop Grammar Systems 2000 Bad Ischl, Austria, July 2000,
pp. 61–74.

	A guide to membrane computing
	Introduction
	Bio-membranes; structure and functions
	The basic model
	Organizing communication
	Universality
	Trading evolution for communication
	Structuring objects (strings)
	P systems with rewriting
	P systems with splicing
	Counting the copies of string-objects

	Trading time for space
	Dividing membranes
	Replicating strings
	Creating membranes

	Discussion
	Acknowledgements
	References

