
Maintaining the cycle structure of permutations

efficiently

Zsuzsanna Lipták and Francesco Masillo

University of Verona

Permutations have a central role in many applications in mathematics and
computer science, spanning from combinatorics and group theory to algorithms
for random generation and genome rearrangements. It is well known that a per-
mutation can be decomposed into disjoint cycles [1], and there exists a simple
linear-time algorithm for computing the cycle decomposition of a given permu-
tation.

In [2], a superset of the current authors studied a combinatorial problem on
the Burrows-Wheeler Transform (BWT). For its efficient solution, we introduced
a new data structure, the Forest of Splay Trees (FST), to store the standard
permutation of a word. At its core, the FST consists of one splay tree per
cycle and a counter for the number of cycles. With some additional tweaks, we
exploited known properties of splay trees to answer cycle membership queries in
amortized O(log n) time, as well as to update the permutation using a specific
type of transposition, also in amortized O(log n) time, for permutations of n.
Finally, it was key for the algorithm’s running time that the data structure allow
returning the number of cycles after each update in constant time.

In this work, we extend the range of operations of the FST. We general-
ize the specific transposition operation used in [2] to transpositions (i, j) and
(π(i), π(j)), for two arbitrary elements i and j, maintaining the previous amor-
tized O(log n) time. Moreover, we describe how to use the FST for other com-
mon tasks on permutations, such as returning π(i), π−1(i), πk(i), and π−k(i).
We compare the extended set of operations to other data structures commonly
used for permutations. In particular, we compare against the one-line notation
(stored as an array), the one-line notation together with the inverse permutation
(stored as two arrays), and the wavelet tree [3].

As far as space is concerned, the FST uses 3n log n bits, while the classical
data structures require n log n, 2n log n, resp. n log n+ o(n) bits. The FST can
be slower for the different operations (lookup and update), but by at most a
logarithmic factor. On the other hand, the FST is the only data structure that
can efficiently update the number of cycles, as well as answering cycle member-
ship queries. Thus the FST is the data structure of choice in applications where
one needs to dynamically keep track of the cycle structure of a permutation.

1



References

[1] M. Bóna. Combinatorics of Permutations, Second Edition. Discrete mathe-
matics and its applications. CRC Press, 2012.

[2] S. Giuliani, Zs. Lipták, F. Masillo, and R. Rizzi. When a dollar makes a
BWT. Theor. Comput. Sci., 857:123–146, 2021.

[3] G. Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20, 2014.

2


