
Computing the optimal BWT using SAIS

Davide Cenzato and Zsuzsanna Lipták

University of Verona, Department of Computer Science, Verona, Italy,
{davide.cenzato,zsuzsanna.liptak}@univr.it

In the last few decades, the advance in sequencing technologies has dramatically re-
duced the cost for DNA sequencing, leading to never-before-seen amounts of genomic
data. As a consequence, the focus has shifted from individual sequences to large col-
lections of (often very similar) sequences, such as in the 1000 Genomes Project [1], the
10,000 Genomes Project [2], or the 100,000 Human Genomes Project [3]. One of the
most effective ways to address this challenge consists in exploiting the repetitiveness
in biological data. In this context, the Burrows-Wheeler-Transform plays a central
role, since it allows querying the data while keeping the input compressed, if possible,
in space proportional to the number r of runs of the BWT.

The BWT was originally defined for individual strings, and it is not immediately
clear how to extend it to a string collection. In our recent work [4], we studied the
different methods currently in use and showed that there were extensive differences
in the resulting transforms. These differences extend to the parameter r, which
is fundamental in data structures built on the BWT, such as the r-index [5]. We
also showed that two of the most commonly used methods for defining the BWT of
string collections depend on the input order; in other words, if the order of the input
sequences is permuted, then the resulting transform will be different.

Bentley, Gibney, and Thankachan [6] gave a linear-time algorithm for computing
the permutation of the input strings that minimizes r, without providing a practical
implementation. Here we present our implementation, combining their algorithm
with our results of [4] and an adaptation of the well-known Suffix Array Induced
Sorting (SAIS) algorithm of Nong et al. [7]. We evaluated our algorithm on 32
million SARS-Cov-2 short reads of length 50 using 7 sets containing 2i million strings
for i = −1, 0, 1, . . . , 5. We compared it with gsufsort, a well-known tool that uses
a variant of SAIS as a subroutine for computing the BWT of string collections. Our
algorithm is time and space competitive with gsufsort, and always produces a BWT
with fewer runs. In particular, on the largest string collection the optimal BWT has
14.2 times fewer runs than the one output by gsufsort.

Ours is the first tool for computing the BWT of a string collection that guarantees
the fewest possible runs, and is thus optimal as a basis of data structures built on the
BWT.



Figure 1: Construction CPU time (left) and average runlength of the BWT (right) on
32 million SARS-CoV2 short reads. We compare our implementation optsais with
the gsufsort tool.

References

[1] The 1000 Genomes Project Consortium, “A global reference for human genetic varia-
tion,” Nature, vol. 526, pp. 68–74, 2015.

[2] Genome 10K Community of Scientists, “A proposal to obtain whole-genome sequence
for 10,000 vertebrate species,” J Hered., vol. 100:659-674, 2009.

[3] C. Turnbull et al., “The 100,000 genomes project: bringing whole genome sequencing
to the NHS,” Br Med J, vol. 361, 2018.

[4] Davide Cenzato and Zsuzsanna Lipták, “A theoretical and experimental analysis of
BWT variants for string collections,” in Proc. of 33rd Annual Symposium on Combina-
torial Pattern Matching, (CPM 2022), 2022, vol. 223 of LIPIcs, pp. 25:1–25:18.

[5] Travis Gagie, Gonzalo Navarro, and Nicola Prezza, “Optimal-time text indexing in
BWT-runs bounded space,” in Proc. of SODA 2018, 2018, pp. 1459–1477.

[6] Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan, “On the complexity of
BWT-runs minimization via alphabet reordering,” in Proc. of 28th Annual European
Symposium on Algorithms (ESA 2020), 2020, vol. 173 of LIPIcs, pp. 15:1–15:13.

[7] Ge Nong, Sen Zhang, and Wai Hong Chan, “Two efficient algorithms for linear time
suffix array construction,” IEEE Trans. Computers, vol. 60, no. 10, pp. 1471–1484,
2011.


