How to use the BWT to construct random de Bruijn sequences

Zsuzsanna Lipták

University of Verona (Italy)

SeqBIM 2024 Rennes, Nov. 29, 2024

The Burrows-Wheeler Transform (BWT)

Recall: $T =$ banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

all rotations, sorted

L

The Burrows-Wheeler Transform (BWT)

Recall: $T =$ banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

all rotations, sorted

L

 $BWT(T) =$ concatenation of last characters = L

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $2/37$

The Burrows-Wheeler Transform

- introduced by Burrows and Wheeler in 1994
- a reversible string transform
- basis of a highly effective lossless text compression algorithm
- basis of compressed data structures (compressed text indexes)

(a) (b) source: Adjeroh, Bell, Mukerjee (2008)

AWARDS & RECOGNITION

Inventors of RW-transform and the **FM-index Receive Kanellakis** Award \approx

Michael Burrows C, Google; Paolo Ferragina &, University of Pisa; and Giovanni Manzini &, University of Pisa, receive the ACM Paris Kanellakis Theory and Practice Award & for inventing the BWtransform and the FM-index that opened and influenced the field of Compressed Data Structures with fundamental impact on Data Compression and Computational Biology. In 1994, Burrows and his late coauthor David Wheeler published their paper describing revolutionary data compression algorithm based on a reversible transformation of the input-the "Burrows-Wheeler Transform" (BWT). A few years later, Ferragina and Manzini showed that, by orchestrating the BWT with a new set of mathematical techniques and algorithmic tools, it became possible to build a "compressed index," later called the FM-index. The introduction of the BW Transform and the development of the FM-index have had a profound impact on the theory of algorithms and data structures with fundamental advancements.

- 2022 ACM Kanellakis Theory and Practice Award
- for BWT and FM-index (Ferragina & Manzini 2000, 2005)

AWARDS & RECOGNITION

Inventors of RW-transform and the **FM-index Receive Kanellakis** Award \approx

Michael Burrows C, Google; Paolo Ferragina &, University of Pisa; and Giovanni Manzini &, University of Pisa, receive the ACM Paris Kanellakis Theory and Practice Award & for inventing the BWtransform and the FM-index that opened and influenced the field of Compressed Data Structures with fundamental impact on Data Compression and Computational Biology. In 1994, Burrows and his late coauthor David Wheeler published their paper describing revolutionary data compression algorithm based on a reversible transformation of the input-the "Burrows-Wheeler Transform" (BWT). A few years later, Ferragina and Manzini showed that, by orchestrating the BWT with a new set of mathematical techniques and algorithmic tools, it became possible to build a "compressed index," later called the FM-index. The introduction of the BW Transform and the development of the FM-index have had a profound impact on the theory of algorithms and data structures with fundamental advancements.

- 2022 ACM Kanellakis Theory and Practice Award
- for BWT and FM-index (Ferragina & Manzini 2000, 2005)
- "... that opened and influenced the field of Compressed Data Structures with fundamental impact on Data Compression and Computational Biology"

AWARDS & RECOGNITION

Inventors of RW-transform and the **FM-index Receive Kanellakis** Award \approx

Michael Burrows C, Google; Paolo Ferragina &, University of Pisa; and Giovanni Manzini &, University of Pisa, receive the ACM Paris Kanellakis Theory and Practice Award & for inventing the BWtransform and the FM-index that opened and influenced the field of Compressed Data Structures with fundamental impact on Data Compression and Computational Biology. In 1994, Burrows and his late coauthor David Wheeler published their paper describing revolutionary data compression algorithm based on a reversible transformation of the input-the "Burrows-Wheeler Transform" (BWT). A few years later, Ferragina and Manzini showed that, by orchestrating the BWT with a new set of mathematical techniques and algorithmic tools, it became possible to build a "compressed index," later called the FM-index. The introduction of the BW Transform and the development of the FM-index have had a profound impact on the theory of algorithms and data structures with fundamental advancements.

- 2022 ACM Kanellakis Theory and Practice Award
- for BWT and FM-index (Ferragina & Manzini 2000, 2005)
- ". . . that opened and influenced the field of Compressed Data Structures with fundamental impact on Data Compression and Computational Biology"
- some bioinformatics tools:
	- bwa, bwa-sw, bwa-mem (Li & Durbin, 2009, 2010, Li 2013) $> 55,000$ cit.
	- bowtie, bowtie2 (Langmead et al., 2009, 2012) $> 70,000$ cit.

Some BWT technicalities

 Z suzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $5/37$

1. U-intervals

Def. Let U be a substring of T. We call $[i, j]$ the U-interval of $L = \text{bwt}(T)$, where the conjugates in positions $k \in [i, j]$ are exactly those starting with U :

1. U-intervals

Def. Let U be a substring of T. We call $[i, j]$ the U-interval of $L = \text{bwt}(T)$, where the conjugates in positions $k \in [i, j]$ are exactly those starting with U :

 $CA = conjugate$ array

Terminology: L[i..j] = left-context of U; [i, j] \cong SA-interval of U (here: CA)

Zsuzsanna Lipták \sim [How to use the BWT for constructing random dB sequences](#page-0-0) \sim 6/37

Why is the BWT so good in compression?

Why is the BWT so good in compression?

- T has many repeated substrings \Rightarrow many U-intervals mostly same character
- $L = \text{bwt}(T)$ has few runs \Rightarrow runlength encoding (RLE) is good

Why is the BWT so good in compression?

- T has many repeated substrings \Rightarrow many U-intervals mostly same character
- $L = \text{bwt}(T)$ has few runs \Rightarrow runlength encoding (RLE) is good

 ${\tt bbbacccccccccccccccccaaaaa} \mapsto {\tt b}^3{\tt a}^1{\tt c}^{18}{\tt a}^5$

An example: the U-interval for $U =$ he+emptyspace in an English text

Kubla Kahn by Samuel Coleridge $(1998 \text{ characters})$ _{8/37}

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0)

An example: the U-interval for $U =$ he+emptyspace in an English text

many the's, some he, she, The

Kubla Kahn by Samuel Coleridge $(1998 \text{ characters})$ _{8/37}

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0)

2. The extended BWT

(Mantaci, Restivo, Rosone, Sciortino, TCS, 2007)

Ex. $M = \{ \text{bana}, \text{na} \}$. The eBWT is a permutation of the characters of \mathcal{M} : eBWT (\mathcal{M}) = nbnaaa.

all rotations (conjugates)

all rotations, sorted

N.B. anab \lt_{ω} an, since anab anab $\cdots \lt_{\text{lex}}$ an \cdot an \cdot an \cdots

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $9/37$

The extended BWT (cont.)

Def. (omega-order):
$$
T <_{\omega} S
$$
 if (a) $T^{\omega} <_{\text{lex}} S^{\omega}$, or
(b) $T^{\omega} = S^{\omega}$, $T = U^{k}$, $S = U^{m}$ and $k < m$

(N.B. With the lex-order, the LF-property would not hold!)

 Z suzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $10/37$

The extended BWT (cont.)

- omega-order instead of lex-order
- the eBWT inherits BWT properties: clustering effect, reversibility, useful for lossless text compression, efficient pattern matching, . . .
- However, until recently no linear-time algorithm was known.

The extended BWT (cont.)

- omega-order instead of lex-order
- the eBWT inherits BWT properties: clustering effect, reversibility, useful for lossless text compression, efficient pattern matching, . . .
- However, until recently no linear-time algorithm was known.

Since 2021: linear-time algorithms and implementations available

- First linear-time algorithm (Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021)
- We significantly simplified this algorithm (Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021)
- ... and gave efficient implementations of the eBWT (cais, pf pebwt 2021)
- Later we gave an r-index based on the eBWT (-, Inf. & Comp. 2024)
- Recently, another linear-time algorithm for the eBWT has appeared (Olbrich, Ohlebusch, Büchler, ACM Tr Alg 2024)

3. The standard permutation

Def. Given a string V, its standard permutation π_V is defined by: $\pi_{V}(i)<\pi_{V}(j)$ if (i) $V_{i}< V_{j},$ or (ii) $V_{i}=V_{j}$ and $i< j.$

In other words, π_V is a stable sort of the characters of V.

Example: $V = \text{nnbaaa}$

(If V is a BWT, then π_V is called LF-mapping.)

• If V is a BWT, then π _V is called LF-mapping.

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex. $V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)$

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex. $V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)$ abanan

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex.
$$
V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)
$$
 abanan (or given pos. 3: banana)

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex. $V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)$ abanan (or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex.
$$
V = \text{nbnaaa}, \pi_V = (0, 4, 1, 3)(2, 5)
$$

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex. $V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)$ abanan (or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex.
$$
V = \text{nbnaaa}, \pi_V = (0, 4, 1, 3)(2, 5)
$$
aban, an

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex. $V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)$ abanan (or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex.
$$
V = \text{nbnaaa}, \pi_V = (0, 4, 1, 3)(2, 5)
$$
 aban, an
(or given the positions 3, 4: bana, na)

- If V is a BWT, then π _V is called LF-mapping.
- With π_V we can recover (a conjugate of) T from bwt(T) back-to-front:

Ex. $V = \text{nnbaaa}, \pi_V = (0, 4, 1, 5, 2, 3)$ abanan (or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT (M) :

Ex.
$$
V = \text{nbnaaa}, \pi_V = (0, 4, 1, 3)(2, 5)
$$
 aban, an
(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string if and only if π_V is cyclic.

Generating random de Bruijn sequences

joint work with Luca Parmigiani

Zsuzsanna Lipták \sim [How to use the BWT for constructing random dB sequences](#page-0-0) \sim 14/37

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is a circular string in which every k-mer occurs exactly once as a substring.

 k -mer = string of length k

Ex. $k = 3:$ aaababbb (binary)

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is a circular string in which every k-mer occurs exactly once as a substring.

 k -mer = string of length k

k-mer position

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is a circular string in which every k-mer occurs exactly once as a substring.

 k -mer = string of length k

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is a circular string in which every k-mer occurs exactly once as a substring.

 k -mer = string of length k

• de Bruijn sequences exist for every k and σ

- de Bruijn sequences exist for every k and σ
- There are $(\sigma!)^{\sigma^{k-1}}/\sigma^k$ dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

- de Bruijn sequences exist for every k and σ
- There are $(\sigma!)^{\sigma^{k-1}}/\sigma^k$ dB sequences of order k

```
(Fly Sainte-Marie 1894,
```
Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph. Ex.: $\sigma = 2, k = 3$:

Example for $\sigma = 3, k = 3$: aaacaabbabcacccabacbccbbbcb

 Z suzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $17/37$

Example for $\sigma = 3, k = 3$: aaacaabbabcacccabacbccbbbcb

N.B. This is one of the 373 248 dB seqs for $\sigma = 3$, $k = 3$. (number of dB seqs = $(\sigma!)^{\sigma^{k-1}}/\sigma^k$)

Applications of de Bruijn sequences

- pseudo-random bit generators
- experimental design: reaction time experiments, imaging studies (MRI)
- computational biology: DNA probe design, DNA microarray, DNA synthesis
- cryptographic protocols

• . . .

The BWT of de Bruijn sequences

U E Z^{k-1}occus 6 to¹mes
U - niterval contains
a permutation of Z

In particular, BWT+RLE does not compress well: many runs!

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) 19/37

The BWT of de Bruijn sequences

In particular, BWT+RLE does not compress well: many runs!

N.B. From now on: binary dB sequences (for simplicity).

Zsuzsanna Lipt´ak [How to use the BWT for constructing random dB sequences](#page-0-0) 19 / 37

Construction algorithms

Many algorithms for constructing dB sequences. Some good overviews:

- H. Fredricksen: A survey of full length nonlinear shift register cycle algorithms, 1982 (classic survey)
- Chang et al., SN Computer Sc., 2021
- Gabric & Sawada, Discr. Math. 2022
- website <debruijnsequence.org> run by Joe Sawada and others

Construction algorithms

Many algorithms for constructing dB sequences. Some good overviews:

- H. Fredricksen: A survey of full length nonlinear shift register cycle algorithms, 1982 (classic survey)
- Chang et al., SN Computer Sc., 2021
- Gabric & Sawada, Discr. Math. 2022
- website <debruijnsequence.org> run by Joe Sawada and others

Most construct:

• one particular dB sequence (e.g. the lex-least dB sequence), or

Construction algorithms

Many algorithms for constructing dB sequences. Some good overviews:

- H. Fredricksen: A survey of full length nonlinear shift register cycle algorithms, 1982 (classic survey)
- Chang et al., SN Computer Sc., 2021
- Gabric & Sawada, Discr. Math. 2022
- website <debruijnsequence.org> run by Joe Sawada and others

Most construct:

- one particular dB sequence (e.g. the lex-least dB sequence), or
- a tiny subset of all dB sequences (e.g. linear feedback shift registers)

Construction algorithms (cont.)

• Linear feedback shift registers (LFSRs):

- number of binary dB sequences $= 2^{2^{k-1}-k}$
- The only algorithms able to construct any dB sequence are based on finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

• Surprisingly, no practical algorithms exist for random dB sequence construction that can output any dB sequence with positive probability.

- Surprisingly, no practical algorithms exist for random dB sequence construction that can output any dB sequence with positive probability.
- Our algorithm does just that!

- Surprisingly, no practical algorithms exist for random dB sequence construction that can output any dB sequence with positive probability.
- Our algorithm does just that!
- ... in near-linear time $\mathcal{O}(n\alpha(n))$, $n =$ length of dB sequence α = inverse Ackermann function

- Surprisingly, no practical algorithms exist for random dB sequence construction that can output any dB sequence with positive probability.
- Our algorithm does just that!
- ... in near-linear time $\mathcal{O}(n\alpha(n))$, $n =$ length of dB sequence

 α = inverse Ackermann function

• ... and it is beautifully simple at that!

The BWT of a dB sequence

```
T =aaababbb, k = 3
```


 $bwt(aaababb) = baabbaba$

The BWT of a dB sequence

$$
T = \text{aaababbb}, k = 3
$$

 $bwt(aaababbb) = baabbaba$

 2^{k-1}

The BWT of a dB sequence

 $T =$ aaababbb, $k = 3$

bwt(aaababbb) = baabbaba Obs: bwt(T) ∈ {ab, ba} 2 k−1 **Proof:** Every $(k - 1)$ -mer occurs exactly twice, preceded once by a, once by b.

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) 23/37

The BWT of a dB sequence (cont.)

Q. Is every string $V \in {\{ab, ba\}}^{2^{k-1}}$ the BWT of a dB sequence?

The BWT of a dB sequence (cont.)

Q. Is every string $V \in {\{ab, ba\}}^{2^{k-1}}$ the BWT of a dB sequence?

A. No! e.g. $V =$ abbababa, its standard permutation is

$$
\pi_V = (\begin{smallmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 4 & 5 & 1 & 6 & 2 & 7 & 3 \end{smallmatrix}) = (0)(1, 4, 6, 7, 3)(2, 5)
$$

Indeed, $V = eBWT({a, aabbb, ab})$.

The BWT of a dB sequence (cont.)

Q. Is every string $V \in {\{ab, ba\}}^{2^{k-1}}$ the BWT of a dB sequence?

A. No! e.g. $V =$ abbababa, its standard permutation is

 $\pi_V = (\begin{smallmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \ 0 & 4 & 5 & 1 & 6 & 2 & 7 & 3 \end{smallmatrix}) = (0)(1, 4, 6, 7, 3)(2, 5)$

Indeed, $V = eBWT({a, aabbb, ab})$.

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of total length 2^k such that every k -mer is the prefix of some rotation of some power of some string in \mathcal{M} .

```
Ex. M = \{a, aabbb, ab\} k-mers: aaa, aab, bab,...
```
dB sets

Indeed, dB sets correspond to edge cycle covers of the dB graph Ex.: $M = \{a, aabbb, ab\}$

The basic theorem

Thm (Higgins, 2012) The set $\{ab,ba\}^{2^{k-1}}$ is the set of eBWTs of binary de Bruijn sets of order k.

Corollary A string $V \in {\text{ab,ba}}^{2^{k-1}}$ is the BWT of a dB sequence if and only if π_V is cyclic.

Our idea: Take a random $V \in {\text{ab, ba}}^{2^{k-1}}$ and turn it into the BWT of a dB sequence.

- If i and $i + 1$ belong to distinct cycles in of π_V then the number of cycles decreases by one,
- otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

- If i and $i + 1$ belong to distinct cycles in of π_V then the number of cycles decreases by one,
- otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex.
$$
V = \underset{01234567}{\text{abbababa}}
$$
, then $\pi_V = (0)(1, 4, 6, 7, 3)(2, 5)$.

- If i and $i + 1$ belong to distinct cycles in of π_V then the number of cycles decreases by one,
- otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex.
$$
V = \underset{01234567}{\text{abbababa}}
$$
, then $\pi_V = (0)(1, 4, 6, 7, 3)(2, 5)$.

• swap V_0 and V_1 : babababa, st. perm. $(0, 4, 6, 7, 3, 1)(2, 5)$

Zsuzsanna Lipt´ak [How to use the BWT for constructing random dB sequences](#page-0-0) 27 / 37

- If i and $i + 1$ belong to distinct cycles in of π_V then the number of cycles decreases by one,
- otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex.
$$
V = \underset{01234567}{\text{abbababa}}
$$
, then $\pi_V = (0)(1, 4, 6, 7, 3)(2, 5)$.

- swap V_0 and V_1 : babababa, st. perm. $(0, 4, 6, 7, 3, 1)(2, 5)$
- swap V_2 and V_3 : baabbaba, st. perm. $(0, 4, 6, 7, 3, 5, 2, 1)$

Invert baabbaba and output the dB sequence $T =$ aaababbb.

Zsuzsanna Lipt´ak [How to use the BWT for constructing random dB sequences](#page-0-0) 27 / 37

How to choose the blocks to swap

- unhappy block: elements $2i$, $2i + 1$ are in different cycles
- cycle graph Γ_V : vertices = cycles, edges = unhappy blocks
- Spanning Trees of $\Gamma_V = (BWTs \text{ of})$ dB sequences closest to V
- here 2 STs: BWTs of aaabbbab, aaababbb

example cont. here 2 STs:

babaabba

baab baba

aaabbbab

aaababbb

Some final details

- The standard permutation can be computed easily: the ith block $\pi_{v}(\{2i, 2i+1\}) = \{i, n/2+i\},\$ where $n = 2^k =$ length of dB seq. (no rank-function needed)
- We do not need V or T: replace ab \mapsto 0, ba \mapsto 1.
- enc(babaabba) = 1101, dec(1101) = babaabba

Algorithm overview (conceptual)

- 1. Choose a random bitstring *b* of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$.
- 3. Construct the cycle graph Γ_{v} .
- 4. Choose a random spanning tree $\mathcal T$ of Γ_V .
- 5. Flip the bits of b corresponding to $\mathcal T$, resulting in b' .
- 6. Invert $S = dec(b')$, resulting in dB sequence T.

1. Choose a random bitstring b of length 2^{k-1} . $O(n)$

- 1. Choose a random bitstring b of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$. Fill in the cycle-array on the fly. $O(n)$

- 1. Choose a random bitstring b of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$. Fill in the cycle-array on the fly. $O(n)$
- 3. Construct the cycle graph Γ_{v} . Compute the edges array. $\mathcal{O}(n)$

- 1. Choose a random bitstring b of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$. Fill in the cycle-array on the fly. $O(n)$
- **3.** Construct the cycle graph Γ_{v} . Compute the edges array. $O(n)$
- 4. Choose a random spanning tree $\mathcal T$ of Γ_V . Union-Find data structure, $|\Gamma_V|$ at most $Z_k = \sum_{d|k} Lyn(d)$ $\alpha(n)$ inverse Ackerman function; $Z_k \sim 2^{k-1}$ $\mathcal{O}(n\alpha(n))$

- 1. Choose a random bitstring b of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$. Fill in the cycle-array on the fly. $O(n)$
- **3.** Construct the cycle graph Γ_{v} . Compute the edges array. $O(n)$
- 4. Choose a random spanning tree $\mathcal T$ of Γ_V . Union-Find data structure, $|\Gamma_V|$ at most $Z_k = \sum_{d|k} Lyn(d)$ $\alpha(n)$ inverse Ackerman function; $Z_k \sim 2^{k-1}$ $\mathcal{O}(n\alpha(n))$
- 5. (in parallel with 4.:) Flip the bits of b of $\mathcal T$, resulting in b' $\mathcal{O}(n)$

- 1. Choose a random bitstring b of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$. Fill in the cycle-array on the fly. $O(n)$
- **3.** Construct the cycle graph Γ_{v} . Compute the edges array. $O(n)$
- 4. Choose a random spanning tree $\mathcal T$ of Γ_V . Union-Find data structure, $|\Gamma_V|$ at most $Z_k = \sum_{d|k} Lyn(d)$ $\alpha(n)$ inverse Ackerman function; $Z_k \sim 2^{k-1}$ $\mathcal{O}(n\alpha(n))$
- 5. (in parallel with 4.:) Flip the bits of b of $\mathcal T$, resulting in b'
- 6. Invert $S = dec(b')$, resulting in dB sequence T. $O(n)$

 $\mathcal{O}(n)$
Algorithm implementation and analysis

- 1. Choose a random bitstring b of length 2^{k-1} .
- 2. Compute the standard permutation π_V of $V = dec(b)$. Fill in the cycle-array on the fly. $O(n)$
- **3.** Construct the cycle graph Γ_{v} . Compute the edges array. $O(n)$
- 4. Choose a random spanning tree T of Γ_V . Union-Find data structure, $|\Gamma_V|$ at most $Z_k = \sum_{d|k} Lyn(d)$ $\alpha(n)$ inverse Ackerman function; $Z_k \sim 2^{k-1}$ $\mathcal{O}(n\alpha(n))$
- 5. (in parallel with 4.:) Flip the bits of b of $\mathcal T$, resulting in b'
- 6. Invert $S = dec(b')$, resulting in dB sequence T. $O(n)$

total running time $\mathcal{O}(n\alpha(n))$ space $\mathcal{O}(n)$

 $\mathcal{O}(n)$

 $\mathcal{O}(n)$

Running time and 12 Intel Core i7-8750H (2.20 GHz) and 12 Intel Core i7-8750H (2.20 GHz) and 17-8750H (2.20 GHz) and 16 GHz) and 17-8750H (2.20 GHz) and 16 GHz)

sequences, without (w/o) and with (w) the time for outputting the dB sequence, on a laptop with 16 GB of RAM. \blacksquare Average running time in seconds, taken over 100 randomly generated dB

- first practical algorithm for constructing a random dB sequence which can produce every dB sequence with positive probability
	- time $\mathcal{O}(n\alpha(n))$
	- space $\mathcal{O}(n)$

- first practical algorithm for constructing a random dB sequence which can produce every dB sequence with positive probability
	- time $\mathcal{O}(n\alpha(n))$
	- space $\mathcal{O}(n)$
- implementation: github.com/lucaparmigiani/rnd_dbseq
	- simple (less than 120 lines of C_{++} code)
	- fast (less than one second on a laptop for k up to 23)

- first practical algorithm for constructing a random dB sequence which can produce every dB sequence with positive probability
	- time $\mathcal{O}(n\alpha(n))$
	- space $\mathcal{O}(n)$
- implementation: github.com/lucaparmigiani/rnd_dbseq
	- simple (less than 120 lines of C_{++} code)
	- fast (less than one second on a laptop for k up to 23)
- or just try it online: <debruijnsequence.org/db/random>

- first practical algorithm for constructing a random dB sequence which can produce every dB sequence with positive probability
	- time $\mathcal{O}(n\alpha(n))$
	- space $\mathcal{O}(n)$
- implementation: github.com/lucaparmigiani/rnd_dbseq
	- simple (less than 120 lines of C_{++} code)
	- fast (less than one second on a laptop for k up to 23)
- or just try it online: <debruijnsequence.org/db/random>
- can be straighforwardly extended to any constant-size alphabet (present on our github)

Conclusion and open problems

Conclusion: The BWT is good for more than compression and indexing!

Conclusion and open problems

Conclusion: The BWT is good for more than compression and indexing!

Open problems:

- distribution of prestige (for rejection sampling)
- for $\sigma > 2$ a straightforward extension of our algorithm has running time $\mathcal{O}(\sigma n\alpha(n))$, due to up to $\binom{\sigma}{2}$ $\binom{\sigma}{2}$ edges in each block; can this be improved?
- algorithm for uniformly random dB sequences
- Paper: Zs. Lipták and L. Parmigiani: A BWT-based algorithm for random de Bruijn sequence construction, LATIN 2024.
- Implementation: github.com/lucaparmigiani/rnd_dbseq
- Paper: Zs. Lipták and L. Parmigiani: A BWT-based algorithm for random de Bruijn sequence construction, LATIN 2024.
- Implementation: github.com/lucaparmigiani/rnd_dbseq

Thank you for your attention!

zsuzsanna.liptak@univr.it

Zsuzsanna Lipt´ak [How to use the BWT for constructing random dB sequences](#page-0-0) 37 / 37

Appendix

Zsuzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $1/7$

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of total length 2^k such that every $\it k$ -mer is the prefix of some rotation of some power of some string in M .

Thm (Higgins, 2012) The set $\{ab,ba\}^{2^{k-1}}$ is the set of eBWTs of binary de Bruijn sets of order k.

A case study

Estimating the average discrepancy of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute difference between the number of a's and b's over all (circular) substrings.

Low discrepancy is preferable for certain applications

 $||#A - #B|| = 17 - 5 = 12$

Estimating the average discrepancy of dB sequences

Average discrepancy of LFSRs from (Gabric and Sawada, 2022).

• For studying properties of de Bruijn sequences, not realistic to use random bitstrings or LFSRs as a sample.

 Z suzsanna Lipták [How to use the BWT for constructing random dB sequences](#page-0-0) $4/7$

Comparison with a randomized Fleury's algorithm

- We modified an implementation of Fleury's algorithm from <debruijnsequence.org> \rightarrow random-Fleury
- random-Fleury cannot construct all possible dB segs, but serves as the closest available method for comparison

Our algorithm is appr. 10-12 times faster for $17 \leq k \leq 23$, and 5 times faster for $k = 29$, and uses only half the memory.

Not uniformly at random

Our algorithm does not output all dB sequences according to the uniform probability distribution, for two reasons:

- 1. the ST of the cycle graph is not chosen uniformly at random
- 2. even if it was, not every dB sequence would be equally likely to be output

Not uniformly at random

Our algorithm does not output all dB sequences according to the uniform probability distribution, for two reasons:

- 1. the ST of the cycle graph is not chosen uniformly at random
- 2. even if it was, not every dB sequence would be equally likely to be output
- ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at random run in superquadratic time (Dufree et al., STOC 2017)

Not uniformly at random

Our algorithm does not output all dB sequences according to the uniform probability distribution, for two reasons:

- 1. the ST of the cycle graph is not chosen uniformly at random
- 2. even if it was, not every dB sequence would be equally likely to be output
- ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at random run in superquadratic time (Dufree et al., STOC 2017)
- ad 2 We define the prestige of a dB sequence t as

$$
\textit{pres}(\,T\,) = \frac{1}{2^{2^{k-1}}} \sum_{V \in \{\texttt{ab}, \texttt{ba}\}^{2^{k-1}}} \textit{prob}(\,T \mid V)
$$

Comparison of empirical probabilities (left) and prestige (right) to the uniform distribution (vertical line), for $k = 4, 5, 6$. y-axis: % of dB seqs that share the same P_e resp. prestige. x-axes normalized w.r.t. P_u .