
How to use
the BWT to construct

random de Bruijn sequences

Zsuzsanna Lipták

University of Verona (Italy)

SeqBIM 2024
Rennes, Nov. 29, 2024

The Burrows-Wheeler Transform (BWT)

Recall: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

L
abanan

anaban

ananab

banana

nabana

nanaba

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 2 / 37

The Burrows-Wheeler Transform (BWT)

Recall: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

L
abanan

anaban

ananab

banana

nabana

nanaba

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 2 / 37

The Burrows-Wheeler Transform

• introduced by Burrows and
Wheeler in 1994

• a reversible string transform

• basis of a highly effective lossless
text compression algorithm

• basis of compressed data structures
(compressed text indexes)

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

source: Adjeroh, Bell, Mukerjee (2008)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 3 / 37

• 2022 ACM Kanellakis Theory and
Practice Award

• for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

• “. . . that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology”

• some bioinformatics tools:

• bwa, bwa-sw, bwa-mem

(Li & Durbin, 2009, 2010, Li 2013)
> 55,000 cit.

• bowtie, bowtie2

(Langmead et al., 2009, 2012)
> 70,000 cit.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 4 / 37

• 2022 ACM Kanellakis Theory and
Practice Award

• for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

• “. . . that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology”

• some bioinformatics tools:

• bwa, bwa-sw, bwa-mem

(Li & Durbin, 2009, 2010, Li 2013)
> 55,000 cit.

• bowtie, bowtie2

(Langmead et al., 2009, 2012)
> 70,000 cit.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 4 / 37

• 2022 ACM Kanellakis Theory and
Practice Award

• for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

• “. . . that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology”

• some bioinformatics tools:

• bwa, bwa-sw, bwa-mem

(Li & Durbin, 2009, 2010, Li 2013)
> 55,000 cit.

• bowtie, bowtie2

(Langmead et al., 2009, 2012)
> 70,000 cit.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 4 / 37

Some BWT technicalities

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 5 / 37

1. U-intervals

Def. Let U be a substring of T . We call [i , j] the U-interval of L = bwt(T),

where the conjugates in positions k ∈ [i , j] are exactly those starting with U:

CA = conjugate array

Terminology: L[i ..j] = left-context of U; [i , j] ∼= SA-interval of U (here: CA)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 6 / 37

1. U-intervals

Def. Let U be a substring of T . We call [i , j] the U-interval of L = bwt(T),

where the conjugates in positions k ∈ [i , j] are exactly those starting with U:

CA = conjugate array

Terminology: L[i ..j] = left-context of U; [i , j] ∼= SA-interval of U (here: CA)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 6 / 37

Why is the BWT so good in compression?

• T has many repeated substrings ⇒ many U-intervals mostly same character

• L = bwt(T) has few runs ⇒ runlength encoding (RLE) is good

bbbaccccccccccccccccccaaaaa 7→ b3a1c18a5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 7 / 37

Why is the BWT so good in compression?

• T has many repeated substrings ⇒ many U-intervals mostly same character

• L = bwt(T) has few runs ⇒ runlength encoding (RLE) is good

bbbaccccccccccccccccccaaaaa 7→ b3a1c18a5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 7 / 37

Why is the BWT so good in compression?

• T has many repeated substrings ⇒ many U-intervals mostly same character

• L = bwt(T) has few runs ⇒ runlength encoding (RLE) is good

bbbaccccccccccccccccccaaaaa 7→ b3a1c18a5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 7 / 37

An example: the U-interval for U = he+emptyspace in an English text

rotation BWT

. . .
he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
(1998 characters)

many the’s, some he, she, The

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 8 / 37

An example: the U-interval for U = he+emptyspace in an English text

rotation BWT

. . .
he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
(1998 characters)

many the’s, some he, she, The

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 8 / 37

2. The extended BWT

(Mantaci, Restivo, Rosone, Sciortino, TCS, 2007)

Ex. M = {bana, na}. The eBWT is a permutation of the characters of
M: eBWT(M) = nbnaaa.

all rotations (conjugates)

bana

anab

naba

aban

na

an

−→
omega order

all rotations, sorted

aban n

anab b

an n

bana a

naba a

na a

N.B. anab <ω an, since anab · anab · · · <lex an · an · an · an · · ·
Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 9 / 37

The extended BWT (cont.)

Def.(omega-order): T <ω S if (a) Tω <lex Sω, or

(b) Tω = Sω, T = Uk ,S = Um and k < m

M = {bana, na} omega-order

aban n

anab b

an n

bana a

naba a

na a

lex-order

aban n

an n

anab b

bana a

na a

naba a

(N.B. With the lex-order, the LF-property would not hold!)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 10 / 37

The extended BWT (cont.)

• omega-order instead of lex-order

• the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, . . .

• However, until recently no linear-time algorithm was known.

Since 2021: linear-time algorithms and implementations available

• First linear-time algorithm (Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021)

• We significantly simplified this algorithm
(Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021)

• . . . and gave efficient implementations of the eBWT (cais,pfpebwt 2021)

• Later we gave an r -index based on the eBWT (—, Inf. & Comp. 2024)

• Recently, another linear-time algorithm for the eBWT has appeared
(Olbrich, Ohlebusch, Büchler, ACM Tr Alg 2024)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 11 / 37

The extended BWT (cont.)

• omega-order instead of lex-order

• the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, . . .

• However, until recently no linear-time algorithm was known.

Since 2021: linear-time algorithms and implementations available

• First linear-time algorithm (Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021)

• We significantly simplified this algorithm
(Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021)

• . . . and gave efficient implementations of the eBWT (cais,pfpebwt 2021)

• Later we gave an r -index based on the eBWT (—, Inf. & Comp. 2024)

• Recently, another linear-time algorithm for the eBWT has appeared
(Olbrich, Ohlebusch, Büchler, ACM Tr Alg 2024)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 11 / 37

3. The standard permutation

Def. Given a string V , its standard permutation πV is defined by:
πV (i) < πV (j) if (i) Vi < Vj , or (ii) Vi = Vj and i < j .

In other words, πV is a stable sort of the characters of V .

Example: V = nnbaaa

0 1 2 3 4 5

n n b a a a

a a a b n n

0 1 2 3 4 5

πV = (0 1 2 3 4 5
4 5 3 0 1 2)

= (0, 4, 1, 5, 2, 3)

(If V is a BWT, then πV is called LF-mapping.)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 12 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3)

abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5)

aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = nnbaaa, πV = (0, 4, 1, 5, 2, 3) abanan

(or given pos. 3: banana)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = nbnaaa, πV = (0, 4, 1, 3)(2, 5) aban, an

(or given the positions 3, 4: bana, na)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 13 / 37

Generating
random de Bruijn sequences

joint work with Luca Parmigiani

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 14 / 37

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 15 / 37

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 15 / 37

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 15 / 37

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 15 / 37

de Bruijn sequences

• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph.
Ex.: σ = 2, k = 3:

aaababbb

aaabbbab

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 16 / 37

de Bruijn sequences

• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph.
Ex.: σ = 2, k = 3:

aaababbb

aaabbbab

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 16 / 37

de Bruijn sequences

• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph.
Ex.: σ = 2, k = 3:

aaababbb

aaabbbab

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 16 / 37

Example for σ = 3, k = 3: aaacaabbabcacccabacbccbbbcb

N.B. This is one of the 373 248 dB seqs for σ = 3, k = 3.

(number of dB seqs = (σ!)σ
k−1
/σk)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 17 / 37

Example for σ = 3, k = 3: aaacaabbabcacccabacbccbbbcb

N.B. This is one of the 373 248 dB seqs for σ = 3, k = 3.

(number of dB seqs = (σ!)σ
k−1
/σk)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 17 / 37

Applications of de Bruijn sequences

• pseudo-random bit generators

• experimental design: reaction time experiments, imaging studies
(MRI)

• computational biology: DNA probe design, DNA microarray, DNA
synthesis

• cryptographic protocols

• . . .

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 18 / 37

The BWT of de Bruijn sequences

In particular, BWT+RLE does not compress well: many runs!

N.B. From now on: binary dB sequences (for simplicity).

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 19 / 37

The BWT of de Bruijn sequences

In particular, BWT+RLE does not compress well: many runs!

N.B. From now on: binary dB sequences (for simplicity).

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 19 / 37

Construction algorithms

Many algorithms for constructing dB sequences. Some good overviews:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Chang et al., SN Computer Sc., 2021

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:

• one particular dB sequence (e.g. the lex-least dB sequence), or
• a tiny subset of all dB sequences (e.g. linear feedback shift registers)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 20 / 37

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences. Some good overviews:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Chang et al., SN Computer Sc., 2021

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:
• one particular dB sequence (e.g. the lex-least dB sequence), or

• a tiny subset of all dB sequences (e.g. linear feedback shift registers)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 20 / 37

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences. Some good overviews:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Chang et al., SN Computer Sc., 2021

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:
• one particular dB sequence (e.g. the lex-least dB sequence), or
• a tiny subset of all dB sequences (e.g. linear feedback shift registers)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 20 / 37

debruijnsequence.org

Construction algorithms (cont.)

• Linear feedback shift registers (LFSRs):

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dBseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

• number of binary dB sequences = 22k−1−k

• The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 21 / 37

Construction of random dB sequences

• Surprisingly, no practical algorithms exist for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 22 / 37

Construction of random dB sequences

• Surprisingly, no practical algorithms exist for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 22 / 37

Construction of random dB sequences

• Surprisingly, no practical algorithms exist for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 22 / 37

Construction of random dB sequences

• Surprisingly, no practical algorithms exist for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 22 / 37

The BWT of a dB sequence

T = aaababbb, k = 3

bwt(aaababbb) = baabbaba

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 23 / 37

The BWT of a dB sequence

T = aaababbb, k = 3

bwt(aaababbb) = baabbaba Obs: bwt(T) ∈ {ab, ba}2k−1

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 23 / 37

The BWT of a dB sequence

T = aaababbb, k = 3

bwt(aaababbb) = baabbaba Obs: bwt(T) ∈ {ab, ba}2k−1

Proof: Every (k − 1)-mer occurs exactly twice, preceded once by a, once
by b.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 23 / 37

The BWT of a dB sequence (cont.)

Q. Is every string V ∈ {ab,ba}2k−1
the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

πV = (0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,aabbb,ab} k-mers: aaa, aab, bab, . . .

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 24 / 37

The BWT of a dB sequence (cont.)

Q. Is every string V ∈ {ab,ba}2k−1
the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

πV = (0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,aabbb,ab} k-mers: aaa, aab, bab, . . .

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 24 / 37

The BWT of a dB sequence (cont.)

Q. Is every string V ∈ {ab,ba}2k−1
the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

πV = (0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,aabbb,ab} k-mers: aaa, aab, bab, . . .

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 24 / 37

dB sets

Indeed, dB sets correspond to edge cycle covers of the dB graph

Ex.: M = {a,aabbb,ab}

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 25 / 37

The basic theorem

Thm (Higgins, 2012) The set {ab,ba}2k−1
is the set of eBWTs of binary

de Bruijn sets of order k .

Corollary A string V ∈ {ab,ba}2k−1
is the BWT of a dB sequence if and

only if πV is cyclic.

Our idea: Take a random V ∈ {ab, ba}2k−1
and turn it into the BWT of

a dB sequence.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 26 / 37

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB sequence T = aaababbb.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 27 / 37

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB sequence T = aaababbb.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 27 / 37

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB sequence T = aaababbb.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 27 / 37

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB sequence T = aaababbb.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 27 / 37

How to choose the blocks to swap

• unhappy block: elements 2i , 2i + 1 are in different cycles

• cycle graph ΓV : vertices = cycles, edges = unhappy blocks

• Spanning Trees of ΓV = (BWTs of) dB sequences closest to V

• here 2 STs: BWTs of aaabbbab, aaababbb

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 28 / 37

example cont.
here 2 STs:

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 29 / 37

Some final details

• The standard permutation can be computed easily: the ith block
πv ({2i , 2i + 1}) = {i , n/2 + i},
where n = 2k = length of dB seq. (no rank-function needed)

• We do not need V or T : replace ab 7→ 0, ba 7→ 1.

• enc(babaabba) = 1101, dec(1101) = babaabba

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 30 / 37

Algorithm overview (conceptual)

1. Choose a random bitstring b of length 2k−1.

2. Compute the standard permutation πV of V = dec(b).

3. Construct the cycle graph Γv .

4. Choose a random spanning tree T of ΓV .

5. Flip the bits of b corresponding to T , resulting in b′.

6. Invert S = dec(b′), resulting in dB sequence T .

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 31 / 37

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 139

Algorithm 2: eBWT to cycle

1 function bwt2cycle(bwt enc):
2 cycle ← integer[n] ◃ initialized with zeros

3 i ← 0
4 num cycles ← 1
5 while i < n do
6 while cycle[i] = 0 do ◃ cycle[i] not yet assigned

7 cycle[i] ← num cycles
8 i ← π(i)

9 i ← i + 1
10 if i < n and cycle[i] = 0 then
11 num cycles ← num cycles + 1

12 return(cycle, num cycles)

b

v

πv

cycle

edges

C1

C4

C2

C3

b
′

b
′′

Fig. 2. a) Random bitstring b of length 2k−1, with its corresponding eBWT v = dec(b),
its permutation πv and the arrays cycle and edges. b) Example of possible de Bruijn
sequence constructed from b. c) the cycle graph Γv.

Output Distribution. The algorithm does not output dB sequences according
to the uniform distribution, and there are two reasons for this. First, let us
assume that we choose the spanning tree of the cycle uniformly at random. Let
b = enc(v) be the random bitstring chosen, then the conditional probability that
a particular dB sequence t is output equals p(t | v) = 1/|B(v)| if bwt(t) ∈ B(v),
and p(t | v) = 0 otherwise. This leads us to define, for a dB sequence t, the
prestige of t, given by pres(t) = 1

|Fk|
∑

v∈Fk
p(t | v). Clearly, pres is a probability

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 32 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Algorithm implementation and analysis

1. Choose a random bitstring b of length 2k−1. O(n)

2. Compute the standard permutation πV of V = dec(b).
Fill in the cycle-array on the fly. O(n)

3. Construct the cycle graph Γv .
Compute the edges array. O(n)

4. Choose a random spanning tree T of ΓV .
Union-Find data structure, |ΓV | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5. (in parallel with 4.:) Flip the bits of b of T , resulting in b′. O(n)

6. Invert S = dec(b′), resulting in dB sequence T . O(n)

total running time O(nα(n))
space O(n)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 33 / 37

Running time

140 Z. Lipták and L. Parmigiani

distribution, and if we chose the spanning tree uniformly at random, then it
would equal the output distribution asymptotically. The second reason is that
the spanning tree is not chosen uniformly at random. In the next section, we give
comparisons of prestige, the output distribution, and the uniform distributions.

5 Experimental Results

Due to lack of space, we give here a short summary of our experimental results.
Full details will be given in the full version of the paper.

Running Times. In Table 2, we report running times (real time) for σ = 2
and k up to 30. All code was compiled with g++ with the flag -O2. It ran on a
portable computer equipped with 12 Intel Core i7-8750H (2.20 GHz) and 16 GB
of RAM.

Table 2. Average running times in seconds, for σ = 2, taken over 100 randomly
generated dB sequences, without (w/o) and with (w) the time for outputting.

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w/o (s) 0.003 0.01 0.02 0.04 0.10 0.29 0.87 2.63 6.07 12.42 27.49 57.19 125.38 247.10

w (s) 0.01 0.02 0.03 0.07 0.16 0.39 0.96 3.11 7.31 15.44 32.32 67.20 144.72 293.49

For σ = 2, we compared our approach with an implementation of Fleury’s
algorithm provided at [25], which we modified by adding randomization. We refer
to this implementation as ‘random-Fleury’. Even though that algorithm cannot
generate all possible dB sequences, given its reliance on DFS for spanning tree
generation, it serves as the closest available method for comparison with our
approach. We show running times and memory peaks consumption in Fig. 3.

Our algorithm is approximately 10–12 times faster than random-Fleury for
k values between 17 and 23, and five times faster for k = 29. Additionally, it
utilizes only half the memory. Memory consumption was evaluated using the
Valgrind Massif tool. The data point of random-Fleury for k = 30 is missing in
both graphs due to exceeding the available RAM (16 GB).

Output Distribution. For σ = 2, we computed the prestige for k = 4, 5 and
estimated experimentally the output distribution for k = 4, 5, 6 (empirical distri-
bution Pe), comparing both to the uniform distribution Pu ≡ 1/|Sk|. Estimates
of Pe are based on 108 trials each, except for k = 6, where they are based on
1010 trials. We note that we computed prestige explicitly, computing p(t | v) for
all v and t, which is prohibitive for k > 5.

There are 16 binary dB sequences of order k = 4, of which 8 have pres(t) =
0.0724 and 8 have pres(t) = 0.0526. For k = 5, there are 132 different prestige
values. In Table 3 we report the maximum and minimum prestige and empiri-
cal probabilities, for k = 4, 5, 6, and their normalized variants w.r.t. Pu (using
fnorm.(t) = (f(t) − 1

|Sk|)|Sk|, where f is pres or Pe).

Average running time in seconds, taken over 100 randomly generated dB

sequences, without (w/o) and with (w) the time for outputting the dB sequence,

on a laptop with 16 GB of RAM.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 34 / 37

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
can produce every dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• or just try it online: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on our github)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 35 / 37

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
can produce every dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• or just try it online: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on our github)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 35 / 37

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
can produce every dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• or just try it online: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on our github)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 35 / 37

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
can produce every dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• or just try it online: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on our github)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 35 / 37

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion and open problems

Conclusion: The BWT is good for more than compression and indexing!

Open problems:

• distribution of prestige (for rejection sampling)

• for σ > 2 a straightforward extension of our algorithm has running
time O(σnα(n)), due to up to

(
σ
2

)
edges in each block; can this be

improved?

• algorithm for uniformly random dB sequences

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 36 / 37

Conclusion and open problems

Conclusion: The BWT is good for more than compression and indexing!

Open problems:

• distribution of prestige (for rejection sampling)

• for σ > 2 a straightforward extension of our algorithm has running
time O(σnα(n)), due to up to

(
σ
2

)
edges in each block; can this be

improved?

• algorithm for uniformly random dB sequences

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 36 / 37

• Paper: Zs. Lipták and L. Parmigiani: A BWT-based algorithm for
random de Bruijn sequence construction, LATIN 2024.

• Implementation: github.com/lucaparmigiani/rnd_dbseq

Thank you for your attention!
zsuzsanna.liptak@univr.it

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 37 / 37

github.com/lucaparmigiani/rnd_dbseq

• Paper: Zs. Lipták and L. Parmigiani: A BWT-based algorithm for
random de Bruijn sequence construction, LATIN 2024.

• Implementation: github.com/lucaparmigiani/rnd_dbseq

Thank you for your attention!
zsuzsanna.liptak@univr.it

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 37 / 37

github.com/lucaparmigiani/rnd_dbseq

Appendix

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 1 / 7

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,ab,aabbb}

k-mer rotation power
aaa aaa a3

aab aabbb aabbb

aba abab (ab)2

abb abbba aabbb

baa . . .
bab

bba

bbb

Thm (Higgins, 2012) The set {ab,ba}2k−1
is the set of eBWTs of binary

de Bruijn sets of order k .

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 2 / 7

A case study
Estimating the average discrepancy of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute
difference between the number of a’s and b’s over all (circular) substrings.

• Low discrepancy is preferable for certain applications

Case Study
Estimating the average discrepancy

of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute
di↵erence between the number of A’s and B’s over all (circular)
substrings.

• Low discrepancy is preferable for certain applications

= 17 - 5 = 12-

Zs. Lipták, L. Parmigiani A BWT-based algorithm for random de Bruijn sequence construction 17

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 3 / 7

Estimating the average discrepancy of dB sequences

Average discrepancy of LFSRs from (Gabric and Sawada, 2022).

• For studying properties of de Bruijn sequences, not realistic to use random
bitstrings or LFSRs as a sample.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 4 / 7

Comparison with a randomized Fleury’s algorithm

• We modified an implementation of Fleury’s algorithm from
debruijnsequence.org → random-Fleury

• random-Fleury cannot construct all possible dB seqs, but serves as
the closest available method for comparison

0

200

400

600

800

17 18 19 20 21 22 23 24 25 26 27 28 29 30

k

T
im

e
(s

)

random−Fleury
rnd_dbseq

0.0

2.5

5.0

7.5

10.0

17 18 19 20 21 22 23 24 25 26 27 28 29 30

k

S
pa

ce
 (

G
B

)

random−Fleury
rnd_dbseq

Our algorithm is appr. 10-12 times faster for 17 ≤ k ≤ 23, and 5 times faster for
k = 29, and uses only half the memory.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 5 / 7

debruijnsequence.org

Not uniformly at random

Our algorithm does not output all dB sequences according to the uniform
probability distribution, for two reasons:

1. the ST of the cycle graph is not chosen uniformly at random

2. even if it was, not every dB sequence would be equally likely to be
output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at random
run in superquadratic time (Dufree et al., STOC 2017)

ad 2 We define the prestige of a dB sequence t as

pres(T) =
1

22k−1

∑

V∈{ab,ba}2k−1

prob(T | V)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 6 / 7

Not uniformly at random

Our algorithm does not output all dB sequences according to the uniform
probability distribution, for two reasons:

1. the ST of the cycle graph is not chosen uniformly at random

2. even if it was, not every dB sequence would be equally likely to be
output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at random
run in superquadratic time (Dufree et al., STOC 2017)

ad 2 We define the prestige of a dB sequence t as

pres(T) =
1

22k−1

∑

V∈{ab,ba}2k−1

prob(T | V)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 6 / 7

Not uniformly at random

Our algorithm does not output all dB sequences according to the uniform
probability distribution, for two reasons:

1. the ST of the cycle graph is not chosen uniformly at random

2. even if it was, not every dB sequence would be equally likely to be
output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at random
run in superquadratic time (Dufree et al., STOC 2017)

ad 2 We define the prestige of a dB sequence t as

pres(T) =
1

22k−1

∑

V∈{ab,ba}2k−1

prob(T | V)

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 6 / 7

k=4
k=5

k=6

−1 0 1 2

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

k=4
k=5

−1 0 1 2

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Comparison of empirical probabilities (left) and prestige (right) to the uniform

distribution (vertical line), for k = 4, 5, 6. y -axis: % of dB seqs that share the

same Pe resp. prestige. x-axes normalized w.r.t. Pu.

Zsuzsanna Lipták How to use the BWT for constructing random dB sequences 7 / 7

	Appendix

