A BWT-based algorithm
for random de Bruijn sequence construction

Zsuzsanna Liptak!

(joint work with Luca Parmigiani?)

LUniversity of Verona, Italy
2Bielefeld University, Germany

DCC, University of Chile, Santiago
27 March 2024

de Bruijn sequences

Def. A binary de Bruijn sequence (dB sequence) of order k is a
(circular) string in which every k-mer (string of length k) occurs
exactly once as a substring.

2/42

de Bruijn sequences

Def. A binary de Bruijn sequence (dB sequence) of order k is a
(circular) string in which every k-mer (string of length k) occurs
exactly once as a substring.

k-mer position
aaa 0
aab
aba
oot
baa
bab
bba
bbb

o WwWNP>NR

2/42

de Bruijn sequences

Def. A binary de Bruijn sequence (dB sequence) of order k is a
(circular) string in which every k-mer (string of length k) occurs
exactly once as a substring.

k-mer position
aaa 0
aab
aba
oot
baa
bab
bba
bbb

o WwWNP>NR

Clearly, a dB sequence of order k has length 2%.

2/42

de Bruijn sequences

® de Bruijn sequences exist for every k (Fly Sainte-Marie, 1894)
o There are 227"~k dB sequences of order k (de Bruijn, 1946)

kll12]s] 4] s 6 | 7| 10 | 15 |

#dBsegs 1 ‘ 1 ‘ 2 ‘ 16 ‘ 2048 ‘ 67 108 864 ‘ 1.44 - 10V ‘ 1.3 - 10 ‘ 3.63 - 104977 ‘

® k =1: ab, k = 2: aabb, kK = 3: aaababbb, aaabbbab

® dB sequences correspond to Euler cycles in the dB graph

3/42

de Bruijn graphs

Def. The (binary) de Bruijn graph of order k is a directed graph
(V,E)s.t. V = {a,b}*, and (u,v) € E iff there is w € {a, b}*+1
with prefix u and suffix v.!

Ex. k =2:
* @

We write the new character x on edge (u,v): w = ux.

!In the bioinformatics literature these are called dB graphs of order k + 1.
4/42

de Bruijn graphs

Def. The (binary) de Bruijn graph of order k is a directed graph
(V,E)s.t. V = {a,b}*, and (u,v) € E iff there is w € {a, b}*+1
with prefix u and suffix v.!

Ex. k =2:
: g

We write the new character x on edge (u,v): w = ux.

So we have a 1-to-1 correspondence between E and {a, b}¥*1, and every
walk in the dB graph spells a string (concatenate the new characters).

!In the bioinformatics literature these are called dB graphs of order k + 1.

4/42

de Bruijn graphs
® de Bruijn graphs are connected and balanced (all v: indeg = outdeg)

® By Euler’s theorem, they are Eulerian (have Euler cycles).

® dB sequences of order k = Euler cycles in dB graph of order k — 1

5/42

de Bruijn graphs

® de Bruijn graphs are connected and balanced (all v: indeg = outdeg)
® By Euler’s theorem, they are Eulerian (have Euler cycles).

® dB sequences of order k = Euler cycles in dB graph of order k — 1

aaabbbab

aaababbb

5/42

de Bruijn graphs

® de Bruijn graphs are connected and balanced (all v: indeg = outdeg)
® By Euler’s theorem, they are Eulerian (have Euler cycles).

® dB sequences of order k = Euler cycles in dB graph of order k — 1

aaabbbab

aaababbb

® Tatyana Ehrenfest and Nicolaas de Bruijn gave the exact number of
Euler cycles in directed Eulerian graphs (BEST theorem, 1951).

5/42

Applications of de Bruijn sequences

® pseudo-random bit generators

6/42

Applications of de Bruijn sequences

® pseudo-random bit generators

® experimental design: reaction time experiments, imaging
studies (MRI)

6/42

Applications of de Bruijn sequences

® pseudo-random bit generators

® experimental design: reaction time experiments, imaging
studies (MRI)

® computational biology: DNA probe design, DNA microarray,
DNA synthesis

6/42

Applications of de Bruijn sequences

pseudo-random bit generators

experimental design: reaction time experiments, imaging
studies (MRI)

computational biology: DNA probe design, DNA microarray,
DNA synthesis

cryptography

6/42

Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:

7/42

debruijnsequence.org

Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:

e one particular dB sequence (e.g. the lex-least dB sequence), or

7/42

debruijnsequence.org

Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:

e one particular dB sequence (e.g. the lex-least dB sequence), or

® a small subset of dB sequences (e.g. LFSRs = linear feedback
shift registers)

7/42

debruijnsequence.org

Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:

e one particular dB sequence (e.g. the lex-least dB sequence), or

® a small subset of dB sequences (e.g. LFSRs = linear feedback
shift registers)

kH4‘ 5‘ 6‘ 7‘ 10‘ 15‘ 20‘
#LFSRs 2 6 6 18 60 1800 24000
#dBsegs 16 | 2048 | 67108864 | 1.44-10'7 | 1.3-10' | 3.63-10%%7 | 2.47 . 1057820

7/42

debruijnsequence.org

Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:

e one particular dB sequence (e.g. the lex-least dB sequence), or

® a small subset of dB sequences (e.g. LFSRs = linear feedback
shift registers)

kH4‘ 5‘ 6‘ 7‘ 10‘ 15‘ 20‘
#LFSRs 2 6 6 18 60 1800 24000
#dBsegs 16 | 2048 | 67108864 | 1.44-10'7 | 1.3-10' | 3.63-10%%7 | 2.47 . 1057820

® The only algorithms able to construct any dB sequence are
based on finding Eulerian cycles in de Bruijn graphs
(Hierholzer, Fleury)

7/42

debruijnsequence.org

Construction of random dB sequences

® Surprisingly, there appear to be no practical algorithm for
random dB sequence construction that can output any dB
sequence with positive probability.

® Qur algorithm does just that!

8/42

The Burrows-Wheeler Transform

Def. The Burrows-Wheeler Transform (BWT) of a string t is the
concatenation of the last characters of its rotations, taken in
lexicographical order.

Ex. t = aaababbb
bwt(t)

COoOoTUToTY O oL
oY VO T QO
oV T TV T
O 0O Y oTT L O
OO ocOow OOT O
O O Y o oTOT
oY 0o O o TO
O OV T O L

9/42

The Burrows-Wheeler Transform

Def. The Burrows-Wheeler Transform (BWT) of a string t is the
concatenation of the last characters of its rotations, taken in
lexicographical order.

Ex. t = aaababbb
bwt(t)

COoOoTUToTY O oL
oY VO T QO
oV T TV T
O 0O Y oTT L O
OO ocTo TUT O
O O Y o oTOT
OO oo v oo OO0
O OV T O L

bwt(aaababbb) = baabbaba

9/42

Reversing the BWT

Def. Given a string v, its standard permutation 7, is defined by:
m (i) < m,(j) if (i) vi < vj, or (i) vi = vj and i < j.

(When v is a BWT, then 7, is also called LF-mapping, which can
be used to recover t from bwt(t) back-to-front.)

Ex. v = baabbaba
mo=(982285%7)=(0,4,6,7,3,5,2,1)

Thm. (Folklore) A string v is the BWT of a primitive string u if
and only if 7, is cyclic.

10/42

The BWT of a dB sequence

t = aaababbb

bwt(t)

0O o ocC OO0 QO ©
00 © oo © ©® Q0
000 ®m®QO ®
T OO0 T o0 o ©
O 0t OO0 o © ©
TQO © QO ©Q ©Q
T 0O O0 OO0
T @O ©C Q0000

= baabbaba

bwt(aaababbb)

11/42

The BWT of a dB sequence

t = aaababbb

bwt(t)

O ©
o0 O
o0 O
© O
0 ©
© O
T ©
T @©

© O
© @©
O ©
O ©
o0 O
© QO
NopNe]
T ©

O ©
0O @©
w M©
o0 QO
o Q
© O
M ©
0 o

O ©
© O
O ©
@ ©
M ©
© O
fopNe]
HopNe]

12/42

The BWT of a dB sequence

t = aaababbb

bwt(t)
b

0 OO oDV T
O V| oT|o T|OT QD
O Ol 9w oo T
v O o|TT
O T|w T|T oo

ooy OO QL
oW oL oL T

OO0 |vY v o

bwt(t) = uguy - - - Upk—1_1, where each block u; € {ab,ba}

12/42

Question Is every string of the form v € {ab,ba}?"" the BWT of
a dB sequence?

No! Ex. v = babababa, its standard perm. is

m =(805163%3) =(0,4.6,7,3,1)(2,5)

The extended BWT (eBWT) is a generalization of the BWT,

where every v is the eBWT of something (of a multiset of strings).

Ex. Here we get two strings, one for each cycle: {aaabbb,ab}.

13/42

The extended BWT

Def. (Mantaci et al., 2007) Let M be a multiset of primitive
strings. The extended BWT (eBWT) of M is the concatenation of
the last characters of its rotations, taken in omega order.

a
aabbb
ab

abbba
baabb
ba

bbaab
bbbaa

M = {a,ab,aabbb}

Def. (omega-order): T <, Sif (i) T% <jex S¥, or

(i) T* =5 T=UKS=U"and k< m.

a
b
b
a
b
a
b
a

14 /42

The basic theorem

Thm (Higgins, 2012) v € {ab,ba}zki1 if and only if v is the eBWT
of a de Bruijn set of order k.

Def. (Higgins, 2012) A binary de Bruijn set of order k is a
multiset of total length 2% such that every k-mer is the prefix of
some rotation of some power of some string in M.

Ex. M; = {aaabbb,ab}, M = {a,ab,aabbb}.

Coro v € {ab,ba}2k71 is the BWT of a dB sequence if and only if
my, is cyclic.

15/ 42

Swapping characters in the eBWT

Lemma (Swap Lemma) Let v € {a,b}*,v; # vj41, and V' be the
result of swapping v; and vj;1. If v; and vj;1 belong to distinct
cycles in the cycle decomposition of 7, then the number of cycles
decreases by one; otherwise it increases by one.

16 /42

Swapping characters in the eBWT

Lemma (Swap Lemma) Let v € {a,b}*,v; # vj41, and V' be the
result of swapping v; and v;;1. If v; and vj;1 belong to distinct
cycles in the cycle decomposition of 7, then the number of cycles
decreases by one; otherwise it increases by one.

Ex.

v = baabbaba 7w, =(

23)=(0,4,6,7,3,5,2,1)
v/ = babababa 7, =(3}

4567
6273
4327)=(0,4,6,7,3,1)(2,5)

This is a generalization of a technique from [Giuliani, L., Masillo, Rizzi,
2021].

16 /42

Transforming the eBWT of a dB set into
the BWT of a dB sequence

v = abababab = (ab)*

17/42

Transforming . ..

® v = abababab = (ab)*

o o
IN
N
wn
N
o
~

o

-
N
w
N
[6,]
o
~

(0)

18/ 42

Transforming . ..

® v = abababab = (ab)*

a a b a b b
0 4 1 5 2 6 7
o 1 2 3 4 5 6 7

(0) (1 42)

19/ 42

Transforming . ..

® v = abababab = (ab)*

a a b a b b
0 4 1 5 2 6 7
0 1 2 3 4 5 6 7

(0)(142)(356)

20/ 42

Transforming . ..

® v = abababab = (ab)*

o—o o
I
-
n o
N o
o o
N O

-
N
w
N
ul
o
~

(0) (1 42)(356)(7)

21/42

Transforming . ..

® v = abababab = (ab)*

’ a b | a b | a b | a b‘
0o 4 1 5 2 6 3 7
|]

0 1 2 3 4 ’5 l ‘7

(0) (1 42)(356)(7)

22/42

Transforming . ..

® v = abababab = (ab)*

(0) (1 42)(356)I(7) (0) (1 45632)(7)

If we swap (3,4) then the resulting string is not in the set

{ab,ba}zkfl. We show that it suffices to swap always within blocks.

23/42

Generation of binary de Bruijn sequences
of order k

® v = abababab = (ab)*

oO—oOo|w
N
—_
wv
N
[e)]
w
N— N | T
o —o|w
N
wv
-
N
[e)]
w
N—T N | T

(0) (1 42)(356)(7) (0) (142 563) (7)

We call a block unhappy if its elements are in different cycles. Here we
have 4 unhappy blocks, but we need only 3 swaps to get one cycle.

24/42

25 /42

26 /42

27 /42

® v = babaabba
® bwt~1(v) = aaabbbab

28/42

How to choose the edges

o123 4% 56 7

cbibobat ()~ (C)

a&i&bbbb %‘(9‘5/
6,7 @

(o)(1,%,2)(3,6,5)0)
c, Cz Cs

@c& dm/.L lJ

® cycle graph I',: vertices = cycles, edges = unhappy blocks
® Spanning Trees (STs) of [, = (BWTs of) dB sequences
® here: 2 STs = 2 dB seqs (aaabbbab, aaababbb)

29/42

Some final details

® The standard permutation can be computed easily: the ith
block m,({2i,2i +1}) = {i,n/2 + i},
where n = 2% = length of dB seq. (no rank-function needed)
® We do not need v or t: replace ab — 0, ba — 1.

¢ enc(babaabba) = 1101, dec(1101) = babaabba

30/42

Algorithm overview

©® Choose a random bitstring b of length 2¢—1.

® Compute the standard permutation 7, of v = dec(b).
© Construct the cycle graph T',.

O Choose a random spanning tree T of I',.

@ Flip the bits of b corresponding to T, resulting in b'.
@ Invert s = dec(b’), resulting in dB seq t.

31/42

a')b\1011110111@111(a1|
v ‘b a‘a b‘b a‘b a‘b a‘b a‘a b‘b a‘b a‘b a‘a b‘b a‘b a‘b a‘a b‘b a‘

T

160 1 17182 193 204 215 6 22237 248 259 10 26 27 11 28 12 29 13 14 30 31 15

cycle |1 11 2]3 1[3 2]2 3]2 1|3 41 2]1 2[3 3]2 2[4 1]1 3]2 4]1 2]2 2]
— 1

[[J.J.J.l

edges[2 4 6 8 10 12 14 16 22 24 26 28|

b)
(104 [0 [22]

b fobiitei1ii1001i01d
aaaaabaabbaababaaabbbbbababbabbb

(1aTa oo 27T 6]

b 1o0V11100110110601]
aaaaabaabbaababbbbbabbababaaabbb

32/42

Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)

33/42

Algorithm implementation and analysis

©® Choose a random bitstring b of length 21, O(n)
® Compute the standard permutation m, of v = dec(b).
Fill in the cycle-array on the fly. O(n)

33/42

Algorithm implementation and analysis

©® Choose a random bitstring b of length 21, O(n)
® Compute the standard permutation m, of v = dec(b).
Fill in the cycle-array on the fly. O(n)

© Construct the cycle graph I',.
Compute the edges array. O(n)

33/42

Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)
2]

Fill in the cycle-array on the fly. O(n)
3]

Compute the edges array. O(n)

O Choose a random spanning tree T of I',.
Union-Find data structure, [I'y| at most Zx = 3_, Lyn(d)
a(n) inverse Ackerman function; Zx ~ 257! /k = ©(n) O(na(n))

33/42

Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)
2]

Fill in the cycle-array on the fly. O(n)
3]

Compute the edges array. O(n)

O Choose a random spanning tree T of I',.
Union-Find data structure, [I'y| at most Zx = 3_, Lyn(d)
a(n) inverse Ackerman function; Zx ~ 257! /k = ©(n) O(na(n))
@ Flip the bits of b corresponding to T, resulting in b'. O(n)
(We actually do 5 in parallel with 4.)

33/42

Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)
2]

Fill in the cycle-array on the fly. O(n)
3]

Compute the edges array. O(n)

O Choose a random spanning tree T of I',.
Union-Find data structure, [I'y| at most Zx = 3_, Lyn(d)
a(n) inverse Ackerman function; Zx ~ 257! /k = ©(n) O(na(n))
@ Flip the bits of b corresponding to T, resulting in b'. O(n)
(We actually do 5 in parallel with 4.)

@ Invert s = dec(b'), resulting in dB sequence t. O(n)

33/42

Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)
2]

Fill in the cycle-array on the fly. O(n)
3]

Compute the edges array. O(n)

O Choose a random spanning tree T of I',.
Union-Find data structure, [I'y| at most Zx = 3_, Lyn(d)
a(n) inverse Ackerman function; Zx ~ 257! /k = ©(n) O(na(n))
@ Flip the bits of b corresponding to T, resulting in b'. O(n)
(We actually do 5 in parallel with 4.)

@ Invert s = dec(b'), resulting in dB sequence t. O(n)

total running time O(na(n))
space O(n)

33/42

Running time

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30
w/o (s) | 0.003 | 0.01 | 0.02 | 0.04 | 0.10 | 0.29 | 0.87 | 2.63 | 6.07 | 12.42 | 27.49 | 57.19 | 125.38 | 247.10
w (s) 0.01 0.02 | 0.03 | 0.07 | 0.16 | 0.39 | 0.96 | 3.11 | 7.31 | 15.44 | 32.32 | 67.20 | 144.72 | 293.49

Average running time in seconds, taken over 100 randomly generated dB
sequences, without (w/0) and with (w) the time for outputting the dB
sequence, on a laptop with 16 GB of RAM.

34/42

Time (s)

Comparison with Fleury's algorithm

® We modified an implementation of Fleury's algorithm from
debrui jnsequence.org — random-Fleury

® random-Fleury cannot construct all possible dB segs, but
serves as the closest available method for comparison

800 bt 10.0 s P
® random-Fleury /) ® random-Fleury i
600 ® rnd_dbseq / T 75 e rnd_dbseq
400 o § 5.0 #
7 o d
200 - < 0 25 Rl
3 - r 3 ..
0l ¢ o o0 o o et o® 0.0l 0000 00 0:8 8¢
17 18 19 20 21 22 23 24 25 26 27 28 29 30 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Our algorithm is appr. 10-12 times faster for 17 < k < 23, and 5 times
faster for k = 29, and uses only half the memory.

35/42

debruijnsequence.org

A case study

Estimating the average discrepancy of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute
difference between the number of a's and b's over all (circular)
substrings.

® Low discrepancy is preferable for certain applications

AAAAAABAAAABBAAABABAAABBBAABAABABBAABBABAABBBBABABABBBABBABBBBBB
|#A - #8| = 17 -5 = 12

36/42

7500

Discrepancy
@
3
S
S

2500

Estimating the average discrepancy of dB

10 15 20 25
k

sequences

Average discrepancy of LFSRs from (Gabric and Sawada, 2022).

® For studying properties of de Bruijn sequences, not realistic to use

random bitstrings or LFSRs as a sample.

37/42

Not uniformly at random

Our algorithm does not output all dB sequences according to the
uniform probability distribution, for two reasons:

@ the ST of the cycle graph is not chosen uniformly at random

® even if it was, not every dB sequence would be equally likely
to be output

38/42

Not uniformly at random

Our algorithm does not output all dB sequences according to the
uniform probability distribution, for two reasons:

@ the ST of the cycle graph is not chosen uniformly at random

® even if it was, not every dB sequence would be equally likely
to be output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at
random run in superquadratic time (Dufree et al., STOC 2017)

38/42

Not uniformly at random

Our algorithm does not output all dB sequences according to the
uniform probability distribution, for two reasons:

@ the ST of the cycle graph is not chosen uniformly at random

® even if it was, not every dB sequence would be equally likely
to be output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at
random run in superquadratic time (Dufree et al., STOC 2017)

ad 2 We define the prestige of a dB sequence t as

pres(t) = 2T1_1 Z p(t|v)

ve{ab,ba}?*?

38/42

Not uniformly at random

100% 1 x 100% 1 =
I el 1 IS
75% | 75% |
0% ! 50% :
25% ! 25% !
1 1
0% t 0% t
100% 1 A 100% 1 il
1 a 1 @
75% | 75% i
50% : 50% :
25% ! 25% !
| 1
0% 4—4‘-— 0%
100% 1 5 -1 0 1 2
1 o
75% I
1
50% .
25% !
1
P N e = =SS,
0% t
-1 0 1 2

Figure: Comparison of empirical probabilities (left) and prestige (right) to
the uniform distribution (vertical line), for k = 4,5,6. y-axis: % of dB
seqs that share the same P, resp. prestige. x-axes normalized w.r.t. P,.

39/42

Conclusion

e first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability

® time O(na(n))
® space O(n)

40/ 42

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

e first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

40/ 42

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

e first practical algorithm for constructing a random dB

sequence which produces any dB sequence with positive
probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq

® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

® try it: debruijnsequence.org/db/random

40/ 42

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability
® time O(na(n))
® space O(n)
implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)
try it: debruijnsequence.org/db/random

we improved the estimates for the average discrepancy of
binary dB sequences

40/ 42

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability
® time O(na(n))
® space O(n)
implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)
try it: debruijnsequence.org/db/random

we improved the estimates for the average discrepancy of
binary dB sequences

our algorithm can be straighforwardly extended to any
constant-size alphabet (present on github)

40/ 42

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Open problems

e distribution of prestige (for rejection sampling)

® for o > 2 a straightforward extension of our algorithm has

running time O(ona(n)), due to up to (%) edges in each
block; can this be improved?

® algorithm for uniformly random dB sequences

41/42

* paper:
Proc. of LATIN2024
(Puerto Varas, Chile,
18-22 March 2024)

» code at (C++ and python):
github.com/lucaparmigiani/
rnd_dbseq

e try it at:
debruijnsequences.org
(website by Joe Sawada)

42/42

* paper:
Proc. of LATIN2024
(Puerto Varas, Chile,
18-22 March 2024)

» code at (C++ and python):
github.com/lucaparmigiani/
rnd_dbseq

e try it at:
debruijnsequences.org
(website by Joe Sawada)

Thank you for your attention!

42/42

