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de Bruijn sequences

Def. A binary de Bruijn sequence (dB sequence) of order k is a
(circular) string in which every k-mer (string of length k) occurs
exactly once as a substring.
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de Bruijn sequences

Def. A binary de Bruijn sequence (dB sequence) of order k is a
(circular) string in which every k-mer (string of length k) occurs
exactly once as a substring.

k-mer  position
aaa 0
aab
aba
oot
baa
bab
bba
bbb

o WwWNP>NR

Clearly, a dB sequence of order k has length 2%.
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de Bruijn sequences

® de Bruijn sequences exist for every k (Fly Sainte-Marie, 1894)
o There are 227"~k dB sequences of order k (de Bruijn, 1946)

kll12]s] 4] s 6 | 7| 10 | 15 |

#dBsegs 1 ‘ 1 ‘ 2 ‘ 16 ‘ 2048 ‘ 67 108 864 ‘ 1.44 - 10V ‘ 1.3 - 10 ‘ 3.63 - 104977 ‘

® k =1: ab, k = 2: aabb, kK = 3: aaababbb, aaabbbab

® dB sequences correspond to Euler cycles in the dB graph
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de Bruijn graphs

Def. The (binary) de Bruijn graph of order k is a directed graph
(V,E)s.t. V = {a,b}*, and (u,v) € E iff there is w € {a, b}*+1
with prefix u and suffix v.!

Ex. k =2:
* @

We write the new character x on edge (u,v): w = ux.

!In the bioinformatics literature these are called dB graphs of order k + 1.
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de Bruijn graphs

Def. The (binary) de Bruijn graph of order k is a directed graph
(V,E)s.t. V = {a,b}*, and (u,v) € E iff there is w € {a, b}*+1
with prefix u and suffix v.!

Ex. k =2:
: g

We write the new character x on edge (u,v): w = ux.

So we have a 1-to-1 correspondence between E and {a, b}¥*1, and every
walk in the dB graph spells a string (concatenate the new characters).

!In the bioinformatics literature these are called dB graphs of order k + 1.
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de Bruijn graphs
® de Bruijn graphs are connected and balanced (all v: indeg = outdeg)

® By Euler’s theorem, they are Eulerian (have Euler cycles).

® dB sequences of order k = Euler cycles in dB graph of order k — 1
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de Bruijn graphs

® de Bruijn graphs are connected and balanced (all v: indeg = outdeg)
® By Euler’s theorem, they are Eulerian (have Euler cycles).

® dB sequences of order k = Euler cycles in dB graph of order k — 1

aaabbbab

aaababbb

® Tatyana Ehrenfest and Nicolaas de Bruijn gave the exact number of
Euler cycles in directed Eulerian graphs (BEST theorem, 1951).
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Applications of de Bruijn sequences

® pseudo-random bit generators
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Applications of de Bruijn sequences

pseudo-random bit generators

experimental design: reaction time experiments, imaging
studies (MRI)

computational biology: DNA probe design, DNA microarray,
DNA synthesis

cryptography
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Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:
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Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada's website debruijnsequence.org). Most construct:

e one particular dB sequence (e.g. the lex-least dB sequence), or

® a small subset of dB sequences (e.g. LFSRs = linear feedback
shift registers)

kH4‘ 5‘ 6‘ 7‘ 10‘ 15‘ 20‘
#LFSRs 2 6 6 18 60 1800 24000
#dBsegs 16 | 2048 | 67108864 | 1.44-10'7 | 1.3-10' | 3.63-10%%7 | 2.47 . 1057820

® The only algorithms able to construct any dB sequence are
based on finding Eulerian cycles in de Bruijn graphs
(Hierholzer, Fleury)
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Construction of random dB sequences

® Surprisingly, there appear to be no practical algorithm for
random dB sequence construction that can output any dB
sequence with positive probability.

® Qur algorithm does just that!
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The Burrows-Wheeler Transform

Def. The Burrows-Wheeler Transform (BWT) of a string t is the
concatenation of the last characters of its rotations, taken in
lexicographical order.

Ex. t = aaababbb
bwt(t)

COoOoTUToTY O oL
oY VO T QO
oV T TV T
O 0O Y oTT L O
OO ocOow OOT O
O O Y o oTOT
oY 0o O o TO
O OV T O L
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The Burrows-Wheeler Transform

Def. The Burrows-Wheeler Transform (BWT) of a string t is the
concatenation of the last characters of its rotations, taken in
lexicographical order.

Ex. t = aaababbb
bwt(t)

COoOoTUToTY O oL
oY VO T QO
oV T TV T
O 0O Y oTT L O
OO ocTo TUT O
O O Y o oTOT
OO oo v oo OO0
O OV T O L

bwt(aaababbb) = baabbaba
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Reversing the BWT

Def. Given a string v, its standard permutation 7, is defined by:
m (i) < m,(j) if (i) vi < vj, or (i) vi = vj and i < j.

(When v is a BWT, then 7, is also called LF-mapping, which can
be used to recover t from bwt(t) back-to-front.)

Ex. v = baabbaba
mo=(982285%7)=(0,4,6,7,3,5,2,1)

Thm. (Folklore) A string v is the BWT of a primitive string u if
and only if 7, is cyclic.
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The BWT of a dB sequence

t = aaababbb

bwt(t)
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T @O ©C Q0000

= baabbaba

bwt(aaababbb)
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The BWT of a dB sequence

t = aaababbb

bwt(t)
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The BWT of a dB sequence

t = aaababbb

bwt(t)
b

0 OO oDV T
O V| oT|o T|OT QD
O Ol 9w oo T
v O o|TT
O T|w T|T oo

ooy OO QL
oW oL oL T

OO0 |vY v o

bwt(t) = uguy - - - Upk—1_1, where each block u; € {ab,ba}
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Question Is every string of the form v € {ab,ba}?"" the BWT of
a dB sequence?

No! Ex. v = babababa, its standard perm. is

m =(805163%3) =(0,4.6,7,3,1)(2,5)

The extended BWT (eBWT) is a generalization of the BWT,

where every v is the eBWT of something (of a multiset of strings).

Ex. Here we get two strings, one for each cycle: {aaabbb,ab}.
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The extended BWT

Def. (Mantaci et al., 2007) Let M be a multiset of primitive
strings. The extended BWT (eBWT) of M is the concatenation of
the last characters of its rotations, taken in omega order.

a
aabbb
ab

abbba
baabb
ba

bbaab
bbbaa

M = {a,ab,aabbb}

Def. (omega-order): T <, Sif (i) T% <jex S¥, or

(i) T* =5 T=UKS=U"and k< m.

a
b
b
a
b
a
b
a
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The basic theorem

Thm (Higgins, 2012) v € {ab,ba}zki1 if and only if v is the eBWT
of a de Bruijn set of order k.

Def. (Higgins, 2012) A binary de Bruijn set of order k is a
multiset of total length 2% such that every k-mer is the prefix of
some rotation of some power of some string in M.

Ex. M; = {aaabbb,ab}, M = {a,ab,aabbb}.

Coro v € {ab,ba}2k71 is the BWT of a dB sequence if and only if
my, is cyclic.
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Swapping characters in the eBWT

Lemma (Swap Lemma) Let v € {a,b}*,v; # vj41, and V' be the
result of swapping v; and vj;1. If v; and vj;1 belong to distinct
cycles in the cycle decomposition of 7, then the number of cycles
decreases by one; otherwise it increases by one.
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Swapping characters in the eBWT

Lemma (Swap Lemma) Let v € {a,b}*,v; # vj41, and V' be the
result of swapping v; and v;;1. If v; and vj;1 belong to distinct
cycles in the cycle decomposition of 7, then the number of cycles
decreases by one; otherwise it increases by one.

Ex.

v = baabbaba 7w, =(

23 )=(0,4,6,7,3,5,2,1)
v/ = babababa 7, =(3}

4567
6273
4327)=(0,4,6,7,3,1)(2,5)

This is a generalization of a technique from [Giuliani, L., Masillo, Rizzi,
2021].
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Transforming the eBWT of a dB set into
the BWT of a dB sequence

v = abababab = (ab)*
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Transforming . ..

® v = abababab = (ab)*
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(0)

18/ 42



Transforming . ..

® v = abababab = (ab)*

a a b a b b
0 4 1 5 2 6 7
o 1 2 3 4 5 6 7

(0) (1 42)
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Transforming . ..

® v = abababab = (ab)*

a a b a b b
0 4 1 5 2 6 7
0 1 2 3 4 5 6 7

(0)(142)(356)
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Transforming . ..

® v = abababab = (ab)*
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(0) (1 42)(356)(7)
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Transforming . ..

® v = abababab = (ab)*

’ a b | a b | a b | a b‘
0o 4 1 5 2 6 3 7
| ]

0 1 2 3 4 ’5 l ‘7

(0) (1 42)(356)(7)
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Transforming . ..

® v = abababab = (ab)*

(0) (1 42)(356)I(7) (0) (1 45632)(7)

If we swap (3,4) then the resulting string is not in the set

{ab,ba}zkfl. We show that it suffices to swap always within blocks.
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Generation of binary de Bruijn sequences
of order k

® v = abababab = (ab)*

oO—oOo|w
N
—_
wv
N
[e)]
w
N— N | T
o —o|w
N
wv
-
N
[e)]
w
N—T N | T

(0) (1 42)(356)(7) (0) (142 563) (7)

We call a block unhappy if its elements are in different cycles. Here we
have 4 unhappy blocks, but we need only 3 swaps to get one cycle.
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® v = babaabba
® bwt~1(v) = aaabbbab
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How to choose the edges

o123 4% 56 7

cbibobat ()~ (C)

a&i&bbbb %‘(9‘5/
6,7 @

(o)(1,%,2)(3,6,5)0)
c, Cz Cs

@c& dm/.L lJ

® cycle graph I',: vertices = cycles, edges = unhappy blocks
® Spanning Trees (STs) of [, = (BWTs of) dB sequences
® here: 2 STs = 2 dB seqs (aaabbbab, aaababbb)
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Some final details

® The standard permutation can be computed easily: the ith
block m,({2i,2i +1}) = {i,n/2 + i},
where n = 2% = length of dB seq. (no rank-function needed)
® We do not need v or t: replace ab — 0, ba — 1.

¢ enc(babaabba) = 1101, dec(1101) = babaabba
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Algorithm overview

©® Choose a random bitstring b of length 2¢—1.

® Compute the standard permutation 7, of v = dec(b).
© Construct the cycle graph T',.

O Choose a random spanning tree T of I',.

@ Flip the bits of b corresponding to T, resulting in b'.
@ Invert s = dec(b’), resulting in dB seq t.
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a')b\1011110111@111(a1|
v ‘b a‘a b‘b a‘b a‘b a‘b a‘a b‘b a‘b a‘b a‘a b‘b a‘b a‘b a‘a b‘b a‘

T

160 1 17182 193 204 215 6 22237 248 259 10 26 27 11 28 12 29 13 14 30 31 15

cycle |1 11 2]3 1[3 2]2 3]2 1|3 41 2]1 2[3 3]2 2[4 1]1 3]2 4]1 2]2 2]
— 1

[[J.J.J.l

edges[2 4 6 8 10 12 14 16 22 24 26 28|

b)
(104 [0 [22]

b fobiitei1ii1001i01d
aaaaabaabbaababaaabbbbbababbabbb

(1aTa oo 27T 6]

b 1o0V11100110110601]
aaaaabaabbaababbbbbabbababaaabbb
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Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)
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Algorithm implementation and analysis

@ Choose a random bitstring b of length 2+, O(n)
2]

Fill in the cycle-array on the fly. O(n)
3]

Compute the edges array. O(n)

O Choose a random spanning tree T of I',.
Union-Find data structure, [I'y| at most Zx = 3_, Lyn(d)
a(n) inverse Ackerman function; Zx ~ 257! /k = ©(n) O(na(n))
@ Flip the bits of b corresponding to T, resulting in b'. O(n)
(We actually do 5 in parallel with 4.)

@ Invert s = dec(b'), resulting in dB sequence t. O(n)

total running time O(na(n))
space O(n)
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Running time

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30
w/o (s) | 0.003 | 0.01 | 0.02 | 0.04 | 0.10 | 0.29 | 0.87 | 2.63 | 6.07 | 12.42 | 27.49 | 57.19 | 125.38 | 247.10
w (s) 0.01 0.02 | 0.03 | 0.07 | 0.16 | 0.39 | 0.96 | 3.11 | 7.31 | 15.44 | 32.32 | 67.20 | 144.72 | 293.49

Average running time in seconds, taken over 100 randomly generated dB
sequences, without (w/0) and with (w) the time for outputting the dB
sequence, on a laptop with 16 GB of RAM.
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Time (s)

Comparison with Fleury's algorithm

® We modified an implementation of Fleury's algorithm from
debrui jnsequence.org — random-Fleury

® random-Fleury cannot construct all possible dB segs, but
serves as the closest available method for comparison

800 bt 10.0 s P
® random-Fleury / ) ® random-Fleury i
600 ® rnd_dbseq / T 75 e rnd_dbseq
400 o § 5.0 #
7 o d
200 - < 0 25 Rl
3 - r 3 ..
0l ¢ o o0 o o et o® 0.0l 0000 00 0:8 8¢
17 18 19 20 21 22 23 24 25 26 27 28 29 30 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Our algorithm is appr. 10-12 times faster for 17 < k < 23, and 5 times
faster for k = 29, and uses only half the memory.
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A case study

Estimating the average discrepancy of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute
difference between the number of a's and b's over all (circular)
substrings.

® Low discrepancy is preferable for certain applications

AAAAAABAAAABBAAABABAAABBBAABAABABBAABBABAABBBBABABABBBABBABBBBBB
|#A - #8| = 17 -5 = 12
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7500

Discrepancy
@
3
S
S

2500

Estimating the average discrepancy of dB

10 15 20 25
k

sequences

Average discrepancy of LFSRs from (Gabric and Sawada, 2022).

® For studying properties of de Bruijn sequences, not realistic to use

random bitstrings or LFSRs as a sample.
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Not uniformly at random

Our algorithm does not output all dB sequences according to the
uniform probability distribution, for two reasons:

@ the ST of the cycle graph is not chosen uniformly at random

® even if it was, not every dB sequence would be equally likely
to be output
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Not uniformly at random

Our algorithm does not output all dB sequences according to the
uniform probability distribution, for two reasons:

@ the ST of the cycle graph is not chosen uniformly at random

® even if it was, not every dB sequence would be equally likely
to be output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at
random run in superquadratic time (Dufree et al., STOC 2017)

ad 2 We define the prestige of a dB sequence t as

pres(t) = 2T1_1 Z p(t|v)

ve{ab,ba}?*?
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Not uniformly at random

100% 1 x 100% 1 =
I el 1 IS
75% | 75% |
0% ! 50% :
25% ! 25% !
1 1
0% t 0% t
100% 1 A 100% 1 il
1 a 1 @
75% | 75% i
50% : 50% :
25% ! 25% !
| 1
0% 4—4‘-— 0%
100% 1 5 -1 0 1 2
1 o
75% I
1
50% .
25% !
1
P N e = =SS,
0% t
-1 0 1 2

Figure: Comparison of empirical probabilities (left) and prestige (right) to
the uniform distribution (vertical line), for k = 4,5,6. y-axis: % of dB
seqs that share the same P, resp. prestige. x-axes normalized w.r.t. P,.
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Conclusion

e first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability

® time O(na(n))
® space O(n)

40/ 42


github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

e first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

40/ 42


github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

e first practical algorithm for constructing a random dB

sequence which produces any dB sequence with positive
probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq

® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

® try it: debruijnsequence.org/db/random

40/ 42


github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability
® time O(na(n))
® space O(n)
implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)
try it: debruijnsequence.org/db/random

we improved the estimates for the average discrepancy of
binary dB sequences

40/ 42


github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

Conclusion

first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability
® time O(na(n))
® space O(n)
implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)
try it: debruijnsequence.org/db/random

we improved the estimates for the average discrepancy of
binary dB sequences

our algorithm can be straighforwardly extended to any
constant-size alphabet (present on github)
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Open problems

e distribution of prestige (for rejection sampling)

® for o > 2 a straightforward extension of our algorithm has

running time O(ona(n)), due to up to (%) edges in each
block; can this be improved?

® algorithm for uniformly random dB sequences

41/42



* paper:
Proc. of LATIN2024
(Puerto Varas, Chile,
18-22 March 2024)

» code at (C++ and python):
github.com/lucaparmigiani/
rnd_dbseq

e try it at:
debruijnsequences.org
(website by Joe Sawada)
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Thank you for your attention!
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