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de Bruijn sequences

Def. A binary de Bruijn sequence (dB sequence) of order k is a
(circular) string in which every k-mer (string of length k) occurs
exactly once as a substring.

Ex. t = a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Clearly, a dB sequence of order k has length 2k .
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de Bruijn sequences

• de Bruijn sequences exist for every k (Fly Sainte-Marie, 1894)

• There are 22
k−1−k dB sequences of order k (de Bruijn, 1946)

k 1 2 3 4 5 6 7 10 15

#dBseqs 1 1 2 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927

• k = 1: ab, k = 2: aabb, k = 3: aaababbb, aaabbbab

• dB sequences correspond to Euler cycles in the dB graph
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de Bruijn graphs

Def. The (binary) de Bruijn graph of order k is a directed graph
(V ,E ) s.t. V = {a, b}k , and (u, v) ∈ E iff there is w ∈ {a, b}k+1

with prefix u and suffix v .1

Ex. k = 2:

We write the new character x on edge (u, v): w = ux .

So we have a 1-to-1 correspondence between E and {a, b}k+1, and every
walk in the dB graph spells a string (concatenate the new characters).

1In the bioinformatics literature these are called dB graphs of order k + 1.
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de Bruijn graphs

• de Bruijn graphs are connected and balanced (all v : indeg = outdeg)

• By Euler’s theorem, they are Eulerian (have Euler cycles).

• dB sequences of order k = Euler cycles in dB graph of order k − 1

 
aaababbb

aaabbbab

• Tatyana Ehrenfest and Nicolaas de Bruijn gave the exact number of
Euler cycles in directed Eulerian graphs (BEST theorem, 1951).
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Applications of de Bruijn sequences

• pseudo-random bit generators

• experimental design: reaction time experiments, imaging
studies (MRI)

• computational biology: DNA probe design, DNA microarray,
DNA synthesis

• cryptography
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Related work

Many algorithms exist for constructing dB sequences (see the
classic book [Golomb 1968], the survey [Fredricksen 1982], Joe
Sawada’s website debruijnsequence.org). Most construct:

• one particular dB sequence (e.g. the lex-least dB sequence), or

• a small subset of dB sequences (e.g. LFSRs = linear feedback
shift registers)

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dBseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

• The only algorithms able to construct any dB sequence are
based on finding Eulerian cycles in de Bruijn graphs
(Hierholzer, Fleury)
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Construction of random dB sequences

• Surprisingly, there appear to be no practical algorithm for
random dB sequence construction that can output any dB
sequence with positive probability.

• Our algorithm does just that!
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The Burrows-Wheeler Transform

Def. The Burrows-Wheeler Transform (BWT) of a string t is the
concatenation of the last characters of its rotations, taken in
lexicographical order.

Ex. t = aaababbb

bwt(aaababbb) = baabbaba
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Reversing the BWT

Def. Given a string v , its standard permutation πv is defined by:
πv (i) < πv (j) if (i) vi < vj , or (ii) vi = vj and i < j .

(When v is a BWT, then πv is also called LF-mapping, which can
be used to recover t from bwt(t) back-to-front.)

Ex. v = baabbaba

πv = ( 0 1 2 3 4 5 6 7
4 0 1 5 6 2 7 4 ) = (0, 4, 6, 7, 3, 5, 2, 1)

Thm. (Folklore) A string v is the BWT of a primitive string u if
and only if πv is cyclic.
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The BWT of a dB sequence

t = aaababbb

bwt(aaababbb) = baabbaba
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The BWT of a dB sequence

t = aaababbb

bwt(t) = u0u1 · · · u2k−1−1, where each block ui ∈ {ab, ba}
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Question Is every string of the form v ∈ {ab,ba}2k−1
the BWT of

a dB sequence?

No! Ex. v = babababa, its standard perm. is

πv = ( 0 1 2 3 4 5 6 7
4 0 5 1 6 2 7 3 ) = (0, 4, 6, 7, 3, 1)(2, 5)

The extended BWT (eBWT) is a generalization of the BWT,
where every v is the eBWT of something (of a multiset of strings).

Ex. Here we get two strings, one for each cycle: {aaabbb,ab}.
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The extended BWT

Def. (Mantaci et al., 2007) Let M be a multiset of primitive
strings. The extended BWT (eBWT) of M is the concatenation of
the last characters of its rotations, taken in omega order.

M = {a,ab,aabbb}

a a
aabbb b
ab b
abbba a
baabb b
ba a
bbaab b
bbbaa a

Def. (omega-order): T <ω S if (i) Tω <lex Sω, or

(ii) Tω = Sω, T = Uk ,S = Um and k < m.
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The basic theorem

Thm (Higgins, 2012) v ∈ {ab,ba}2k−1
if and only if v is the eBWT

of a de Bruijn set of order k.

Def. (Higgins, 2012) A binary de Bruijn set of order k is a
multiset of total length 2k such that every k-mer is the prefix of
some rotation of some power of some string in M.

Ex. M1 = {aaabbb,ab}, M2 = {a,ab,aabbb}.

Coro v ∈ {ab,ba}2k−1
is the BWT of a dB sequence if and only if

πv is cyclic.
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Swapping characters in the eBWT

Lemma (Swap Lemma) Let v ∈ {a,b}∗, vi 6= vi+1, and v ′ be the
result of swapping vi and vi+1. If vi and vi+1 belong to distinct
cycles in the cycle decomposition of πv then the number of cycles
decreases by one; otherwise it increases by one.

Ex.

v = baabbaba πv =( 0 1 2 3 4 5 6 7
4 0 1 5 6 2 7 3 ) = (0, 4, 6, 7, 3, 5, 2, 1)

v ′ = babababa πv ′ =( 0 1 2 3 4 5 6 7
4 0 5 1 6 2 7 3 ) = (0, 4, 6, 7, 3, 1)(2, 5)

This is a generalization of a technique from [Giuliani, L., Masillo, Rizzi,

2021].
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Transforming the eBWT of a dB set into
the BWT of a dB sequence

v = abababab = (ab)4
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Transforming . . .

• v = abababab = (ab)4
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Transforming . . .
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Transforming . . .

• v = abababab = (ab)4

If we swap (3, 4) then the resulting string is not in the set

{ab,ba}2k−1
. We show that it suffices to swap always within blocks.
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Generation of binary de Bruijn sequences
of order k

• v = abababab = (ab)4

We call a block unhappy if its elements are in different cycles. Here we

have 4 unhappy blocks, but we need only 3 swaps to get one cycle.
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1)
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• v = babaabba

• bwt−1(v) = aaabbbab
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How to choose the edges

• cycle graph Γv : vertices = cycles, edges = unhappy blocks

• Spanning Trees (STs) of Γv = (BWTs of) dB sequences

• here: 2 STs = 2 dB seqs (aaabbbab, aaababbb)
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Some final details

• The standard permutation can be computed easily: the ith
block πv ({2i , 2i + 1}) = {i , n/2 + i},
where n = 2k = length of dB seq. (no rank-function needed)

• We do not need v or t: replace ab 7→ 0, ba 7→ 1.

• enc(babaabba) = 1101, dec(1101) = babaabba
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Algorithm overview

1 Choose a random bitstring b of length 2k−1.

2 Compute the standard permutation πv of v = dec(b).

3 Construct the cycle graph Γv .

4 Choose a random spanning tree T of Γv .

5 Flip the bits of b corresponding to T , resulting in b′.

6 Invert s = dec(b′), resulting in dB seq t.
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A BWT-Based Algorithm for Random de Bruijn Sequence Construction 139

Algorithm 2: eBWT to cycle

1 function bwt2cycle(bwt enc):
2 cycle ← integer[n] ◃ initialized with zeros

3 i ← 0
4 num cycles ← 1
5 while i < n do
6 while cycle[i] = 0 do ◃ cycle[i] not yet assigned

7 cycle[i] ← num cycles
8 i ← π(i)

9 i ← i + 1
10 if i < n and cycle[i] = 0 then
11 num cycles ← num cycles + 1

12 return(cycle, num cycles)

b

v

πv

cycle

edges

C1

C4

C2

C3

b
′

b
′′

Fig. 2. a) Random bitstring b of length 2k−1, with its corresponding eBWT v = dec(b),
its permutation πv and the arrays cycle and edges. b) Example of possible de Bruijn
sequence constructed from b. c) the cycle graph Γv.

Output Distribution. The algorithm does not output dB sequences according
to the uniform distribution, and there are two reasons for this. First, let us
assume that we choose the spanning tree of the cycle uniformly at random. Let
b = enc(v) be the random bitstring chosen, then the conditional probability that
a particular dB sequence t is output equals p(t | v) = 1/|B(v)| if bwt(t) ∈ B(v),
and p(t | v) = 0 otherwise. This leads us to define, for a dB sequence t, the
prestige of t, given by pres(t) = 1

|Fk|
∑

v∈Fk
p(t | v). Clearly, pres is a probability
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Algorithm implementation and analysis

1 Choose a random bitstring b of length 2k−1. O(n)

2 Compute the standard permutation πv of v = dec(b).
Fill in the cycle-array on the fly. O(n)

3 Construct the cycle graph Γv .
Compute the edges array. O(n)

4 Choose a random spanning tree T of Γv .
Union-Find data structure, |Γv | at most Zk =

∑
d|k Lyn(d)

α(n) inverse Ackerman function; Zk ∼ 2k−1/k = Θ(n) O(nα(n))

5 Flip the bits of b corresponding to T , resulting in b′. O(n)
(We actually do 5 in parallel with 4.)

6 Invert s = dec(b′), resulting in dB sequence t. O(n)

total running time O(nα(n))
space O(n)
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Running time

140 Z. Lipták and L. Parmigiani

distribution, and if we chose the spanning tree uniformly at random, then it
would equal the output distribution asymptotically. The second reason is that
the spanning tree is not chosen uniformly at random. In the next section, we give
comparisons of prestige, the output distribution, and the uniform distributions.

5 Experimental Results

Due to lack of space, we give here a short summary of our experimental results.
Full details will be given in the full version of the paper.

Running Times. In Table 2, we report running times (real time) for σ = 2
and k up to 30. All code was compiled with g++ with the flag -O2. It ran on a
portable computer equipped with 12 Intel Core i7-8750H (2.20 GHz) and 16 GB
of RAM.

Table 2. Average running times in seconds, for σ = 2, taken over 100 randomly
generated dB sequences, without (w/o) and with (w) the time for outputting.

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w/o (s) 0.003 0.01 0.02 0.04 0.10 0.29 0.87 2.63 6.07 12.42 27.49 57.19 125.38 247.10

w (s) 0.01 0.02 0.03 0.07 0.16 0.39 0.96 3.11 7.31 15.44 32.32 67.20 144.72 293.49

For σ = 2, we compared our approach with an implementation of Fleury’s
algorithm provided at [25], which we modified by adding randomization. We refer
to this implementation as ‘random-Fleury’. Even though that algorithm cannot
generate all possible dB sequences, given its reliance on DFS for spanning tree
generation, it serves as the closest available method for comparison with our
approach. We show running times and memory peaks consumption in Fig. 3.

Our algorithm is approximately 10–12 times faster than random-Fleury for
k values between 17 and 23, and five times faster for k = 29. Additionally, it
utilizes only half the memory. Memory consumption was evaluated using the
Valgrind Massif tool. The data point of random-Fleury for k = 30 is missing in
both graphs due to exceeding the available RAM (16 GB).

Output Distribution. For σ = 2, we computed the prestige for k = 4, 5 and
estimated experimentally the output distribution for k = 4, 5, 6 (empirical distri-
bution Pe), comparing both to the uniform distribution Pu ≡ 1/|Sk|. Estimates
of Pe are based on 108 trials each, except for k = 6, where they are based on
1010 trials. We note that we computed prestige explicitly, computing p(t | v) for
all v and t, which is prohibitive for k > 5.

There are 16 binary dB sequences of order k = 4, of which 8 have pres(t) =
0.0724 and 8 have pres(t) = 0.0526. For k = 5, there are 132 different prestige
values. In Table 3 we report the maximum and minimum prestige and empiri-
cal probabilities, for k = 4, 5, 6, and their normalized variants w.r.t. Pu (using
fnorm.(t) = (f(t) − 1

|Sk| )|Sk|, where f is pres or Pe).

Average running time in seconds, taken over 100 randomly generated dB

sequences, without (w/o) and with (w) the time for outputting the dB

sequence, on a laptop with 16 GB of RAM.
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Comparison with Fleury’s algorithm

• We modified an implementation of Fleury’s algorithm from
debruijnsequence.org → random-Fleury

• random-Fleury cannot construct all possible dB seqs, but
serves as the closest available method for comparison
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Our algorithm is appr. 10-12 times faster for 17 ≤ k ≤ 23, and 5 times
faster for k = 29, and uses only half the memory.
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A case study
Estimating the average discrepancy of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute
difference between the number of a’s and b’s over all (circular)
substrings.

• Low discrepancy is preferable for certain applications

Case Study
Estimating the average discrepancy

of de Bruijn sequences

Def. The discrepancy of a binary string is the maximum absolute
di↵erence between the number of A’s and B’s over all (circular)
substrings.

• Low discrepancy is preferable for certain applications

= 17 - 5 = 12-
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Estimating the average discrepancy of dB
sequences

Average discrepancy of LFSRs from (Gabric and Sawada, 2022).

• For studying properties of de Bruijn sequences, not realistic to use
random bitstrings or LFSRs as a sample.
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Not uniformly at random

Our algorithm does not output all dB sequences according to the
uniform probability distribution, for two reasons:

1 the ST of the cycle graph is not chosen uniformly at random

2 even if it was, not every dB sequence would be equally likely
to be output

ad 1 Fastest algorithms for choosing a ST of a multigraph uniformly at
random run in superquadratic time (Dufree et al., STOC 2017)

ad 2 We define the prestige of a dB sequence t as

pres(t) =
1

22k−1

∑

v∈{ab,ba}2k−1

p(t | v)
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Not uniformly at random
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Figure: Comparison of empirical probabilities (left) and prestige (right) to
the uniform distribution (vertical line), for k = 4, 5, 6. y -axis: % of dB
seqs that share the same Pe resp. prestige. x-axes normalized w.r.t. Pu.
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Conclusion

• first practical algorithm for constructing a random dB
sequence which produces any dB sequence with positive
probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• try it: debruijnsequence.org/db/random

• we improved the estimates for the average discrepancy of
binary dB sequences

• our algorithm can be straighforwardly extended to any
constant-size alphabet (present on github)
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Open problems

• distribution of prestige (for rejection sampling)

• for σ > 2 a straightforward extension of our algorithm has
running time O(σnα(n)), due to up to

(
σ
2

)
edges in each

block; can this be improved?

• algorithm for uniformly random dB sequences
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• paper:  
Proc. of LATIN2024  
(Puerto Varas, Chile,  
18-22 March 2024) 

• code at (C++ and python):  
github.com/lucaparmigiani/
rnd_dbseq  

• try it at: 
debruijnsequences.org  
(website by Joe Sawada)

Thank you for your attention!
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