Dollar or no dollar, that is the question

New combinatorial results on the
Burrows-Wheeler-Transform

Zsuzsanna Liptak

University of Verona (Italy)

Seminario de Teoria y Datos
PUC Chile, Santiago, Nov. 4, 2022

Part I

Introduction

Zsuzsanna Liptak Dollar or no dollar, that is the question 2/47

The BWT

Zsuzsanna Liptak Dollar or no dollar, that is the question 3/47

The BWT

source: group-media.mercedes-benz.com

Zsuzsanna Liptak Dollar or no dollar, that is the question 3/47

The BWT

source: group-media.mercedes-benz.com

(BWT here stands for: Best Water Technology)

Zsuzsanna Liptak Dollar or no dollar, that is the question 3/47

The Burrows-Wheeler-Transform

Ex.: T = banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

banana
ananab
nanaba
anaban
nabana
abanan

—
lexicographic
order

all rotations, sorted

abanan
anaban
ananab
banana
nabana
nanaba

Take a string (word) T, list all of its rotations, sort them lexicographically,
concatenate last characters: bwt(T).

Zsuzsanna Liptdk

Dollar or no dollar, that is the question

4/47

BWT history

invented by David Wheeler in the 70s
as a lossless text compression algorithm

fully developed and written up together with Michael Burrows in 1994
appeared as a technical report only, never published

popularized by Julian Seward's implementation: bzip and bzip2
(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Liptak Dollar or no dollar, that is the question 5/47

BWT history

invented by David Wheeler in the 70s
as a lossless text compression algorithm

fully developed and written up together with Michael Burrows in 1994
appeared as a technical report only, never published

popularized by Julian Seward's implementation: bzip and bzip2
(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Liptak Dollar or no dollar, that is the question 5/47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
abanan
anaban
ananab
banana
nabana
nanaba

o~ w N RO

Zsuzsanna Liptak Dollar or no dollar, that is the question 6/47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® Obs. 1: F = all characters of T in lex. order:
abanan aaabnn

anaban
ananab
banana
nabana
nanaba

o~ w N RO

Zsuzsanna Liptak Dollar or no dollar, that is the question 6/47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

o~ w N RO

F L
abanan
anaban
ananab
banana
nabana
nanaba

Zsuzsanna Liptdk

® Obs. 1: F = all characters of T in lex. order:

aaabnn

® QObs. 2: for all i: L; precedes F; in T:

T = banana
012345

Dollar or no dollar, that is the question

6/47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® Obs. 1: F = all characters of T in lex. order:
0 abanan aaabnn
1 anaban e Obs. 2: for all i: L; precedes F; in T:
2 ananab
T = banana
3 Dbanana 012345
4 nabana ® Obs. 3: all occurrences of a substring appear in
5 nanaba consecutive rows

Zsuzsanna Liptak Dollar or no dollar, that is the question 6/47

Why can the BWT be useful in text compression?

® Obs. 1: F = all characters of T in lex. order.

® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows

Zsuzsanna Liptak Dollar or no dollar, that is the question 7/47

Why can the BWT be useful in text compression?

® Obs. 1: F = all characters of T in lex. order.
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ's of ana

abanan
anaban
ananab
banana
nabana
nanaba

Zsuzsanna Liptak Dollar or no dollar, that is the question 7/47

Why can the BWT be useful in text compression?

® Obs. 1: F = all characters of T in lex. order.
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ's of ana 2 occ's of na
preceded by a

abanan abanan
anaban anaban
ananab ananab
banana banana
nabana nabana
nanaba nanaba

Zsuzsanna Liptak Dollar or no dollar, that is the question 7/47

Why can the BWT be useful in text compression?

® Obs. 1: F = all characters of T in lex. order.
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ's of ana 2 occ's of na 2 occ's of a
preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana

nanaba nanaba nanaba

Zsuzsanna Liptak Dollar or no dollar, that is the question 7/47

Why can the BWT be useful in text compression?

® Obs. 1: F = all characters of T in lex. order.
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ's of ana 2 occ's of na 2 occ's of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

So: we get a run of a's of length 2, and a run of n's of length 2

Zsuzsanna Liptak Dollar or no dollar, that is the question

7/47

Why can the BWT be useful in text compression?

® Obs. 1: F = all characters of T in lex. order.
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ's of ana 2 occ's of na 2 occ's of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

So: we get a run of a's of length 2, and a run of n's of length 2 (2 = no. occ’s).

Zsuzsanna Liptak Dollar or no dollar, that is the question 7/47

Of course, things are a bit more complicated:

Zsuzsanna Liptak Dollar or no dollar, that is the question 8/47

Of course, things are a bit more complicated:

rotation

BWT

he
he
he
he
he
he
he
he
he
he
he
he
he
he
he
he

caverns measureless to man, And sank in tumult to a

caves. It was a miracle of rare device, A sunny pleasure-...

dome of pleasure Floated midway on the waves; Where was

fountain and the caves. It was a miracle of rare device,...

green hill athwart a cedarn cover! A savage place! as
hills, Enfolding sunny spots of greenery. But oh! that
milk of Paradise.

mingled measure From the fountain and the caves. It was a ...

on honey-dew hath fed, And drunk the milk of Paradise.
played, Singing of Mount Abora. Could I revive within me
sacred river ran, Then reached the caverns measureless
sacred river, ran Through caverns measureless to man ...
sacred river. Five miles meandering with a mazy motion ...
shadow of the dome of pleasure Floated midway on the waves

thresher’s flail: And mid these dancing rocks at once and ...

waves; Where was heard the mingled measure From the

L c c ct c o o

ct o H o o 0

Kubla Kahn by Samuel Coleridge

® many the's, some he, she, The

Zsuzsanna Liptdk Dollar or no dollar, that is the question

8 /47

Compression with the BWT

® in original paper: using Move-to-front and Huffman/arithmetic coding

Zsuzsanna Liptak Dollar or no dollar, that is the question 9/47

Compression with the BWT

® in original paper: using Move-to-front and Huffman /arithmetic coding
® nowadays: using RLE (runlength-encoding)

Zsuzsanna Liptak Dollar or no dollar, that is the question 9/47

Compression with the BWT

® in original paper: using Move-to-front and Huffman /arithmetic coding
® nowadays: using RLE (runlength-encoding)

® RLE: replace equal-letter-runs by (character, integer)-pair
® Ex.: bbbbbbbbcaaaaaaaaaaabb — (b, 8),(c, 1), (a,11), (b,2)

)

Zsuzsanna Liptak Dollar or no dollar, that is the question 9/47

Compression with the BWT

® in original paper: using Move-to-front and Huffman /arithmetic coding
® nowadays: using RLE (runlength-encoding)

® RLE: replace equal-letter-runs by (character, integer)-pair
® Ex.: bbbbbbbbcaaaaaaaaaaabb — (b, 8),(c, 1), (a,11), (b,2)

® good if few runs w.r.t. length of string

Zsuzsanna Liptak Dollar or no dollar, that is the question 9/47

Compression with the BWT

in original paper: using Move-to-front and Huffman/arithmetic coding
nowadays: using RLE (runlength-encoding)

® RLE: replace equal-letter-runs by (character, integer)-pair
® Ex.: bbbbbbbbcaaaaaaaaaaabb — (b, 8),(c, 1), (a,11), (b,2)

good if few runs w.r.t. length of string
Def.: r(T) = # runs of bwt(T)

Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

Zsuzsanna Liptak Dollar or no dollar, that is the question 9/47

Compression with the BWT

in original paper: using Move-to-front and Huffman/arithmetic coding
nowadays: using RLE (runlength-encoding)

® RLE: replace equal-letter-runs by (character, integer)-pair
® Ex.: bbbbbbbbcaaaaaaaaaaabb — (b, 8),(c, 1), (a,11), (b,2)

good if few runs w.r.t. length of string
Def.: r(T) = # runs of bwt(T)

Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

for repetitive strings, r is small

Zsuzsanna Liptak Dollar or no dollar, that is the question 9/47

BWT magic

The BWT ...

requires same space as T in bits: nlogo bits o = alphabetsize
(suffix array: nlog n bits, suffix tree: much more—still O(n)) n=|T|

easier to compress than T, if T repetitive

very fast (!!!) pattern matching (most basic problem on strings)
computable in linear time O(n)

reversible in linear time O(n) nnbaaa,3 — banana

can replace text (suffix array, suffix tree: no)

Zsuzsanna Liptak Dollar or no dollar, that is the question 10/ 47

Compressed data structures for strings

Data structures based on the BWT:
® FM-index [Ferragina and Manzini, FOCS 2000]
¢ RLFM-index [Makinen and Navarro, CPM 2005]
® r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

® some recent developments on r-index [Rossi et al. JCB 2022; Giuliani
et al. SEA 2022; Cobas et al. CPM 2021; Boucher et al. SPIRE 2021]

Some tools in bioinformatics (aligners):

® bwa [Durbin and Li, 2009] ca. 41,000 cit.
® bowtie [Langmead and Salzberg, 2010] ca. 36,000 cit.
® soap2 [Li et al., 2009]
. DR

Zsuzsanna Liptdk Dollar or no dollar, that is the question 11 /47

The parameter r

Def. String T, r = number of runs of bwt(T).
® size of data structures O(r)
® algorithms' running time ideally a function of r (not of n =|T]|)

® increasingly used as a repetitiveness measure of T
® some papers on r:
® Manzini: “An analysis of the Burrows-Wheeler-Transform” [JACM 2001]
® Kempa and Kociumaka: " Resolution of the Burrows-Wheeler Transform
Conjecture” [FOCS 2020]
® Navarro: “Indexing Highly Repetitive String Collections,
Part I: Repetitiveness Measures” [ACM Comp. Surv., 2021]
® Mantaci et al.: "Measuring the clustering effect of BWT via RLE”
[TCS 2017]

Zsuzsanna Liptdk Dollar or no dollar, that is the question 12 /47

BWT from a combinatorial perspective

® special case of the Gessel-Reutenauer-bijection [Crochemore,
Désarménien, Perrin, 2004]

® introduction of the extended BWT (eBWT), a generalization of the
BWT to multisets of strings [Mantaci et al. 2007]

e strings T with fully clustering BWTs (e.g. bwt(T) = bbbbaaccc)

® full characterization for o = 2 [Mantaci et al., 2003]
® partial characterization for o > 2 [Puglisi et al., 2008]
® characterization via interval exchanges [Ferenczi et al., 2013]

e fixpoints of the BWT [Mantaci et al., 2017]
e characterization of BWT images [Likhomanov and Shur, 2011]

Good overview: Rosone and Sciortino: “The Burrows-Wheeler Transform
between Data Compression and Combinatorics on Words.” [CiE 2013]

Zsuzsanna Liptak Dollar or no dollar, that is the question 13 /47

® two research communities working on the BWT

® (1) data structures and algorithms on strings and
(2) combinatorics on words

e [ittle interaction until ...

Zsuzsanna Liptdk Dollar or no dollar, that is the question

14 /47

Dagstuhl workshop “25 years of the Burrows-Wheeler-Transform” (2019)
organized by T. Gagie, G. Manzini, G. Navarro, J. Stoye

2

Zsuzsanna Liptak Dollar or no dollar, that is the question 15 /47

But: The two communities use slightly different definitions of the BWT:

e Data Structures and Algorithms on Strings:
It is assumed that each string terminates with an end-of-string

character (denoted $, smaller than all others)
T = banana$

® Combinatorics on Words: no such assumption T = banana

Zsuzsanna Liptak Dollar or no dollar, that is the question 16 / 47

But: The two communities use slightly different definitions of the BWT:

e Data Structures and Algorithms on Strings:
It is assumed that each string terminates with an end-of-string

character (denoted $, smaller than all others)
T = banana$

® Combinatorics on Words: no such assumption T = banana

Zsuzsanna Liptak Dollar or no dollar, that is the question 16 / 47

Part |l:

Dollar or no dollar,

that is the question

Dollar or no dollar, that is the question

17 /47

1. The transform itself

sanna Liptdk Dollar or no dollar, that is the question

18 /47

banana

abanan
anaban
ananab
banana
nabana
nanaba

nnbaaa

Zsuzsanna Liptdk

Different transforms

Dollar or no dollar, that is the question

banana$

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

annb$aa

19 /47

Different transforms

without dollar | with dollar
(banana) (banana$)
the transform nnbaaa annb$aa

Zsuzsanna Liptak Dollar or no dollar, that is the question 20 /47

Different transforms

without dollar | with dollar
(banana) (banana$)
the transform nnbaaa annb$aa
remove $ nnbaaa annbaa
Zsuzsanna Liptak Dollar or no dollar, that is the question

20 /47

Different transforms

without dollar | with dollar
(banana) (banana$)
the transform nnbaaa annb$aa
remove $ nnbaaa annbaa
runs r 3 4
Zsuzsanna Liptak Dollar or no dollar, that is the question

20 /47

Different transforms

without dollar | with dollar
(banana) (banana$)
the transform nnbaaa annb$aa
remove $ nnbaaa annbaa
runs r 3 4

® Thm. There exist strings for which the difference in r is ©(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

Zsuzsanna Liptak Dollar or no dollar, that is the question 20 /47

Different transforms

® Thm. There exist strings for which the difference in r is ©(log n).

® This is asymptotically tight: here r = O(1), and upper bound is

without dollar | with dollar
(banana) (banana$)
the transform nnbaaa annb$aa
remove $ nnbaaa annbaa
runs r 3 4

[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

O(log rlog n).

Zsuzsanna Liptdk

[Akagi, Funakoshi, Inenaga, 2021]

Dollar or no dollar, that is the question

20 /47

Different transforms
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

Thm. There exist strings for which the difference in r is ©(log n).

® r(T$) increases by log n: Fibonacci words of even order
T = Fib(2k),r(T) =2,r(T$) =2k -1
ex.:
r(Fib(8)) = 2, r(Fib(8)$) =7
r(Fib(12)) = 2, r(Fib(12)$) = 11
® r(T$) decreases by log n: Fibonacci words of odd order without the
first character T = Fib(2k + 1)[1:],r(T) = 2k, r(T$) =5

ex:
r(Fib(13)[1]) = 12, r(Fib(13)[1 :]$) = 5
r(Fib(15)[1 :]) = 14, r(Fib(15)[1 :]$) = 5

Zsuzsanna Liptdk Dollar or no dollar, that is the question 21 /47

Different transforms
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

Thm. There exist strings for which the difference in r is ©(log n).
® r(T$) increases by log n: Fibonacci words of even order
T = Fib(2k),r(T) =2,r(T$) =2k -1
ex.:
r(Fib(8)) = 2, r(Fib(8)$) =7
r(Fib(12)) = 2, r(Fib(12)$) = 11
® r(T$) decreases by log n: Fibonacci words of odd order without the
first character T = Fib(2k + 1)[1:],r(T) = 2k, r(T$) =5
ex:
r(Fib(13)[1:]) = 12, r(Fib(13)[1 :]$) =5
r(Fib(15)[1 :]) = 14, r(Fib(15)[1 :]$) =5

® both additive and multiplicative difference

Zsuzsanna Liptdk Dollar or no dollar, that is the question 21 /47

2. BWT construction

Zsuzsanna Liptak Dollar or no dollar, that is the question 22 /47

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: L; = Tsapj—1 (recall Obs. 2).

ex. T = banana$.
0123456

SA

a$

ana$
anana$
banana$
na$
nana$

N PO R, WO O

Zsuzsanna Liptdk Dollar or no dollar, that is the question 23 /47

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: L; = Tsapj—1 (recall Obs. 2).

ex. T = banana$.

0123456

SA SA L
6 $ 6 $ a
5 a$ 5 a$ n
3 ana$ 3 ana$ban
1 anana$ 1 anana$b
0 Dbanana$ 0 banana$
4 na$ 4 na$bana
2 nana$ 2 nana$ba

Zsuzsanna Liptdk Dollar or no dollar, that is the question 23 /47

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: L; = Tsapj—1 (recall Obs. 2).

ex. T = banana$.

0123456
SA SA L
6 $ 6 $ a
5 a$ 5 a$ n
3 ana$ 3 ana$ban
1 anana$ 1 anana$b
0 Dbanana$ 0 banana$
4 na$ 4 na$bana
2 nana$ 2 nana$ba

Thus: SA-construction in O(n) time = BWT-construction in O(n) time.

Zsuzsanna Liptdk Dollar or no dollar, that is the question 23 /47

BWT construction without dollar

® This works fine if there is a $.

e What if there is no dollar?

Zsuzsanna Liptak Dollar or no dollar, that is the question 24 /47

BWT construction without dollar

Problem 1:

banana
012345

SA

a

ana
anana
banana
na

N O R WO

nana

nnbaaa Vv

Zsuzsanna Liptak Dollar or no dollar, that is the question 25 /47

BWT construction without dollar

Problem 1:

banana
012345

SA SA L

5 a 5 a n

3 ana 3 anaban

1 anana 1 ananab

0 banana 0 Dbanana

4 na 4 nabana

2 nana 2 nanaba

nnbaaa Vv

Zsuzsanna Liptak Dollar or no dollar, that is the question 25 /47

BWT construction without dollar

Problem 1:

banana anaban
012345 012345

SA SA L

5 a 5 a n

3 ana 3 anaban

1 anana 1 ananab

0 banana 0 Dbanana

4 na 4 nabana

2 nana 2 nanaba

nnbaaa V'

Zsuzsanna Liptak Dollar or no dollar, that is the question 25 /47

BWT construction without dollar

Problem 1:
banana anaban
012345 012345
SA SA L SA

5 a 5 a n 2 aban

3 ana 3 anaban 4 an

1 anana 1 ananab 0 anaban

0 banana 0 Dbanana 3 Dban

4 na 4 nabana 5 n

2 nana 2 nanaba 1 naban

nnbaaa V' nbnaaa X

Zsuzsanna Liptak Dollar or no dollar, that is the question 25 /47

BWT construction without dollar

Problem 1:

banana anaban
012345 012345

SA SA L SA SA L

5 a 5 a n 2 aban 2 abanan

3 ana 3 anaban 4 an 4 ananab

1 anana 1 ananab 0 anaban 0 anaban

0 banana 0 Dbanana 3 Dban 3 Dbanana

4 na 4 nabana 5 n 5 n a

2 nana 2 nanaba 1 naban 1 nabana

nnbaaa V' nbnaaa X

Zsuzsanna Liptak Dollar or no dollar, that is the question 25 /47

BWT construction without dollar

Problem 1:

banana anaban
012345 012345

SA SA L SA SA L

5 a 5 a n 2 aban 2 abanan

3 ana 3 anaban 4 an 4 ananab

1 anana 1 ananab 0 anaban 0 anaban

0 banana 0 Dbanana 3 Dban 3 Dbanana

4 na 4 nabana 5 n 5 n a

2 nana 2 nanaba 1 naban 1 nabana

nnbaaa Vv nbnaaa X

N.B. suf; < suf; < conj; < conj; does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Liptak Dollar or no dollar, that is the question 25 /47

BWT construction without dollar

Problem 2: If T not primitive, then CA not defined (several identical
rotations):

nanana = (na)
012345

CA

1?7 ananan
3?7 ananan
57 ananan
0? nanana
2?7 nanana
4?7 nanana

3

Zsuzsanna Liptak Dollar or no dollar, that is the question 26 /47

Linear-time BWT construction without dollar

® For $-terminated strings, neither problem exists.

® For Lyndon words (primitive and < all their rotations), neither problem
exists.

® All previous BWT-construction algorithms either use $ or Lyndon rotations.

Our algorithm [Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]:

o first linear-time BWT-construction algorithm which uses neither $ nor
Lyndon rotations

® adaptation of the SAIS-algorithm for SA-construction [Nong et al., 2011]

® previously, SAIS had been adapted for T$ [Okanohara and Sadakane 2009],
and to the bijective BWT [Bannai et al., 2021]

Zsuzsanna Liptdk Dollar or no dollar, that is the question 27 /47

Our algorithm for BWT construction

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]

1. assign circular types to positions

2. sort LMS-substrings

3. assign new names to LMS-substrings

4. construct new string, solve recursively

5. induce CA from relative order of LMS-positions

Step 1 Step 2 Step 3 Step 4 Step 5

012345 a |bln 5aba A 012 AlB a_|b|n

banana|lS* 135 l1ana B ABB 0 531

LSLSLS||l L 0|241||3 ana B SLL 21 0l42
¥ k% %115 513 % 0{21||CA 531|042

513|024 BWT nnb|alaa

Zsuzsanna Liptdk Dollar or no dollar, that is the question 28 /47

BWT without dollar

Implementations of SAIS for conjugate array (cais) for
e BWT without $
® eBWT (extended BWT) (see later)
e BBWT (bijective BWT)

e option for including dollar(s)

See https://github.com/davidecenzato/cais

Zsuzsanna Liptak Dollar or no dollar, that is the question

29 /47

3. BWT of string collections

sanna Liptdk Dollar or no dollar, that is the question 30/47

How to compute the BWT of a multiset of strings?

[Cenzato and L., CPM 2022]

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

It turns out that there are several non-equivalent methods in use:

variant (our result on example tools
terminology)
eBWT CGGGATGTACGTTAAAAA pfpebut

dollarEBWT | GGAAACGG$$STTACTGTSAAAS | G2BWT, pfpebwt, msbwt
multidolBWT | GAGAAGCG$$$TTATCTGSAAAS | BCR, ropebwt2, nvSetBWT,
Merge-BWT, eGSA, eGAP,
bwt-lcp-parallel, gsufsort
concatBWT $AAGAGGGCS#STTACTGTSAAAS | BigBWT, tools for single strings
colexBWT AAAGGCGG$$STTACTGTSAAAS | ropebwt2

Zsuzsanna Liptdk Dollar or no dollar, that is the question 31 /47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)

uses omega-order instead of lexicographical order: e.g. aba <, ab

Zsuzsanna Liptak Dollar or no dollar, that is the question 32 /47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <, ab
T<,Sif(a)) T*<S¥ or(b) T*=5% T=UKS=Umand k<m

Zsuzsanna Liptak Dollar or no dollar, that is the question 32 /47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <, ab
T<,Sif(a)) T*<S¥ or(b) T*=5% T=UKS=Umand k<m
2. dollarEBWT(M) = eBWT({T;$: T; € M})

Zsuzsanna Liptak Dollar or no dollar, that is the question

32/47

The different BWT variants

. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <, ab
T<,Sif(a)) T*<S¥ or(b) T*=5% T=UKS=Umand k<m

2. dollarEBWT(M) = eBWT({T;$: T: € M})
3. multidolBWT(M) = bwt(T1$1 T2%2 - - - Tx$«), where dollars are smaller

than characters from ¥, and $1 < $, < ... < $«

Zsuzsanna Liptak Dollar or no dollar, that is the question 32 /47

The different BWT variants

. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <, ab
T<,Sif(a)) T*<S¥ or(b) T*=5% T=UKS=Umand k<m

2. dollarEBWT(M) = eBWT({T;$: T: € M})
3. multidolBWT(M) = bwt(T1$1 T2%2 - - - Tx$«), where dollars are smaller

than characters from ¥, and $1 < $, < ... < $«
. concatBWT (M) = bwt(T1$T2% - - - Tx$#), where # < $

Zsuzsanna Liptak Dollar or no dollar, that is the question 32 /47

The different BWT variants

. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <, ab
T<,Sif(a)) T*<S¥ or(b) T*=5% T=UKS=Umand k<m

2. dollarEBWT(M) = eBWT({T;$: T: € M})
3. multidolBWT(M) = bwt(T1$1 T2%2 - - - Tx$«), where dollars are smaller

than characters from ¥, and $1 < $, < ... < $«

4. concatBWT(M) = bwt(T1$T2$--- Tk $#), where # < $
5. colexBWT(M) = multidol(M, 7), where ~ is the permutation

corresponding to the colexicographic ('reverse lexicographic').

Zsuzsanna Liptdk Dollar or no dollar, that is the question 32 /47

Interesting intervals

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant ‘ example
non-sep.based
eBWT(M) CGGGATGTACCTTAAAAA

separator-based
dollarEBWT (M)
multidolBWT (M)
concatBWT (M)
colexBWT (M)

GGAAACGGSSTTACTCTSAAAS
GAGAAGCG$SSTTATCTCSAAAS
AAGAGGGCS$$STTACTCTSAAAS
AAAGGCGGSSSTTACTCTSAAAS

Zsuzsanna Liptak Dollar or no dollar, that is the question

33/47

Inter

esting intervals

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant ‘ example
non-sep.based
eBWT(M) CGGGATGTACCTTAAAAA

separator-based
dollarEBWT (M)
multidolBWT (M)
concatBWT (M)
colexBWT (M)

in color: interesting intervals

GGAAACGGSSTTACTCTSAAAS
GAGAAGCG$SSTTATCTCSAAAS
AAGAGGGCS$$STTACTCTSAAAS
AAAGGCGGSSSTTACTCTSAAAS

Zsuzsanna Liptak Dollar or no dollar, that is the question

33/47

Interesting intervals

An interval [i,j] is interesting if it is the SA-interval of a left-maximal shared
suffix U. Then and only then can two separator-based BWTs differ in [/, j].

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

A$# G A$,.TG G

A$. .. G A$2GG G
A$5.GG G A$3TG]

U = A$ U = A$ U = A$

concBWT mdolBWT dolEBWT

Zsuzsanna Liptak Dollar or no dollar, that is the question 34 /47

Order of shared suffixes

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant

| example

order of shared suffixes

eBWT(M)

the extended BWT
CGGGATGTACGTTAAAAA

omega-order of strings
(mixed in with substrings)

dollarEBWT(M)

eBWT({T;$: T; e M}
GGAAACGG$SSTTACTCTSAAAS

lexicographic order of strings

multido BWT (M)

bWt(T1$1 T2$2 cee Tk$k)
GAGAAGCG$$STTATCTGSAAAS

input order of strings

concatBWT(M) | bwt(T1$T2%--- Tk $#) lexicographic order of
AAGAGGGC$SSTTACTCTSAAAS | subsequent strings in input
colexBWT(M) multidol(M, v), v = colex colexicographic order

Zsuzsanna Liptdk

AAAGGCGGSSSTTACTCTSAAAS

Dollar or no dollar, that is the question

35 /47

Order of shared suffixes

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant

| example

order of shared suffixes

eBWT(M)

the extended BWT
CGGGATGTACGTTAAAAA

omega-order of strings
(mixed in with substrings)

dollarEBWT(M)

eBWT({T;$: T; e M}
GGAAACGG$SSTTACTCTSAAAS

lexicographic order of strings

multido BWT (M)

bWt(T1$1 T2$2 cee Tk$k)
GAGAAGCG$$STTATCTGSAAAS

input order of strings

concatBWT(M) | bwt(T1$T2%--- Tk $#) lexicographic order of
AAGAGGGC$SSTTACTCTSAAAS | subsequent strings in input
colexBWT(M) multidol(M, v), v = colex colexicographic order

AAAGGCGGSSSTTACTCTSAAAS

In the k-prefix (shared suffix: $) of the BWT we see the output order.

Zsuzsanna Liptdk

Dollar or no dollar, that is the question

35 /47

Input order dependence

N.B. multidoIBWT and concatBWT depend on the input order!

4)
M, = [ATATG, TGA,ACG,ATCA,GGA] mdolBWT(M;) = GAGAAGCG$$STTATCTGSAAAS
M, = [ACG,ATATG,GGA, TGA,ATCA] mdolBWT(M;) = GGAAAGGC$$$TTACTGTSAAAS
_ J
()
M = [ATATG, TGA,ACG,ATCA,GGA] concBWT(M;) = AAGAGGGC$$STTACTGT$AAAS

M, = [ACG, ATATG, GGA, TGA,ATCA] concBWT(M;) = AGAGACGG$$STTACTTGSAAAS
J

Zsuzsanna Liptdk Dollar or no dollar, that is the question 36 /47

The parameter r

Results regarding r on four short sequence datasets, of all BWT variants.

50

average runlength (n/r)

10

BWT variant
eBWT
dolEBWT
mdolBWT
concBWT
colexBWT

SARS-CoV-2 short Simons Diversity reads 165 rRNAshort Influenza A reads
dataset

350%

300%

250%

200%

150%

100%

number of runs (percentage increase)

50%

0%

BWT variant
eBWT
dollEBWT
mdollarBWT
concatBWT
colexBWT

SARS-CoV-2 short Simons Diversity reads 165 rRNAshort Influenza A reads
dataset

Left: average runlength (n/r). Right: number of runs r (percentage increase with
respect to the optimal BWT of [Bentley et al., ESA 2020]).
(In each experiment: 500,000 seq.s of length between 50 and 301.)

Zsuzsanna Liptak Dollar or no dollar, that is the question

37/47

The different BWT variants

BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

we theoretically explained these differences ("interesting intervals™)
differences especially high on large sets of short sequences
multidoIBWT and concatBWT depend on the input order

differences extend to parameter r (number of runs of the BWT)
(up to a factor of 4.2 in our experiments)

Zsuzsanna Liptdk Dollar or no dollar, that is the question

38 /47

The different BWT variants

BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

e we theoretically explained these differences ("interesting intervals”)

differences especially high on large sets of short sequences
multidoIBWT and concatBWT depend on the input order

differences extend to parameter r (number of runs of the BWT)
(up to a factor of 4.2 in our experiments)

We suggest
® to standardize the definition of r (colexBWT or optBWT)

¢ optBWT now implemented (see Cenzato and L., WCTA 2022;
Cenzato, Guerrini, L., Rosone, forthcoming)

Zsuzsanna Liptdk Dollar or no dollar, that is the question 38 /47

4. A side question

Zsuzsanna Liptak Dollar or no dollar, that is the question 39 /47

What is the output order of the concatBWT?
ex. M—={ATATG; TGA;ACGATCA;GGA} M = [ATATG, TGA, ACG, ATCA, GGA]

concatBWT (M) = BWT(ATATGSTGASACGSATCASGGAS#)

Map strings to their lexicographic rank:

ACG = a
ATATG — Db
ATCA — ¢
GGA = d
TGA = e

M = ATATG S TGA $ ACG $ATCA$ GGA $# +— beacd#.
S 7 = =~

e a c d

o

Zsuzsanna Liptak Dollar or no dollar, that is the question 40 /47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index | concatBWT | rotation
23 A $# GGA
10 A $ACGSATCASGGASHATATGSTGA
14 G $ATCASGGAS# ACG
19 A $GGAS#H ATCA
6 G $TGASACGSATCASGGASH#HATATG

input: b e a c 4 # output: d e a c b

Zsuzsanna Liptdk Dollar or no dollar, that is the question 41 /47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index | concatBWT | rotation
23 A $# GGA
10 A $ACGSATCASGGASHATATGSTGA
14 G $ATCASGGAS# ACG
19 A $GGAS#H ATCA
6 G $TGASACGSATCASGGASH#HATATG

input: b e a c 4 #

output: d e a c b

BWT (beacd#) = de#tacb ~- deacb

Zsuzsanna Liptdk

Dollar or no dollar, that is the question

41 /47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index | concatBWT | rotation
23 A $# GGA
10 A $ACGSATCASGGASHATATGSTGA
14 G $ATCASGGAS# ACG
19 A $GGAS#H ATCA
6 G $TGASACGSATCASGGASH#HATATG

input: b e a c 4 #

output: d e a c b

BWT (beacd#) = de#tacb ~- deacb

output = BWT(input+#)

Zsuzsanna Liptdk

Dollar or no dollar, that is the question

41 /47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index | concatBWT | rotation
23 A $# GGA
10 A $ACGSATCASGGASHATATGSTGA
14 G $ATCASGGAS# ACG
19 A $GGAS#H ATCA
6 G $TGASACGSATCASGGASH#HATATG

input: b e a c 4 # output: d e a c b
BWT(beacd#) = de#tacb ~» deacb

output = BWT(input+#) (remove the # from the output)

Zsuzsanna Liptdk Dollar or no dollar, that is the question 41 /47

Part Ill:

Conclusion

Zsuzsanna Liptak Dollar or no dollar, that is the question 42 /47

Zsuzsanna Liptak Dollar or no dollar, that is the question 43 /47

Dollar or no dollar, that is the question.

Zsuzsanna Liptak Dollar or no dollar, that is the question 43 /47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

Zsuzsanna Liptak Dollar or no dollar, that is the question 44 /47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

Zsuzsanna Liptak Dollar or no dollar, that is the question

44 /47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar is present

Zsuzsanna Liptak Dollar or no dollar, that is the question 44 /47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)
2. BWT construction: cannot use SA when no dollar is present

3. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Liptak Dollar or no dollar, that is the question 44 /47

Acknowledgements (co-authors)

M

Marinella Sciortino Shunsuke Inenanaga Christina Boucher Massimiliano Rossi
(Univ. of Palermo) (Kyushu Univ.) (Univ. of Florida) (Mumina Inc.)

|

) ')
Sara Giuliani Davide Cenzato Francesco Masillo
(Univ. of Verona) (Univ. of Verona) (Univ. of Verona)

Zsuzsanna Liptak Dollar or no dollar, that is the question 45 /47

Literature

C. Boucher, D. Cenzato, Zs. Liptak, M. Rossi, M. Sciortino: Computing the
original eBWT faster, simpler, and with less memory. SPIRE 2021.

S. Giuliani, S. Inenaga, Zs. Liptdk, M. Sciortino: On bit catastrophes for the
Burrows-Wheeler-Transform, forthcoming.

D. Cenzato and Zs. Liptak: A theoretical and experimental analysis of BWT
variants for string collections, CPM 2022.

D. Cenzato and Zs. Liptdk: Computing the optimal BWT using SAIS,
WCTA 2022.

D. Cenzato, V. Guerrini, Zs. Liptdk, and G. Rosone: Computing the optimal
BWT for very large string collections, submitted.

Zsuzsanna Liptdk Dollar or no dollar, that is the question 46 / 47

Thank you for your attention!

email: zsuzsanna.liptak@univr.it

Zsuzsanna Liptdk Dollar or no dollar, that is the question 47 /47

