
Dollar or no dollar, that is the question

New combinatorial results on the
Burrows-Wheeler-Transform

Zsuzsanna Lipták

University of Verona (Italy)

Seminario de Teoria y Datos
PUC Chile, Santiago, Nov. 4, 2022

Part I:

Introduction

Zsuzsanna Lipták Dollar or no dollar, that is the question 2 / 47

The BWT

source: group-media.mercedes-benz.com

(BWT here stands for: Best Water Technology)

Zsuzsanna Lipták Dollar or no dollar, that is the question 3 / 47

The BWT

source: group-media.mercedes-benz.com

(BWT here stands for: Best Water Technology)

Zsuzsanna Lipták Dollar or no dollar, that is the question 3 / 47

The BWT

source: group-media.mercedes-benz.com

(BWT here stands for: Best Water Technology)

Zsuzsanna Lipták Dollar or no dollar, that is the question 3 / 47

The Burrows-Wheeler-Transform

Ex.: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

Take a string (word) T , list all of its rotations, sort them lexicographically,
concatenate last characters: bwt(T).

Zsuzsanna Lipták Dollar or no dollar, that is the question 4 / 47

BWT history

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

• invented by David Wheeler in the 70s
as a lossless text compression algorithm

• fully developed and written up together with Michael Burrows in 1994

• appeared as a technical report only, never published

• popularized by Julian Seward’s implementation: bzip and bzip2

(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 47

BWT history

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

• invented by David Wheeler in the 70s
as a lossless text compression algorithm

• fully developed and written up together with Michael Burrows in 1994

• appeared as a technical report only, never published

• popularized by Julian Seward’s implementation: bzip and bzip2

(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

• Obs. 3: all occurrences of a substring appear in
consecutive rows

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

• Obs. 3: all occurrences of a substring appear in
consecutive rows

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

• Obs. 3: all occurrences of a substring appear in
consecutive rows

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 47

Why can the BWT be useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

• Obs. 3: all occurrences of a substring appear in
consecutive rows

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 47

Why can the BWT be useful in text compression?

• Obs. 1: F = all characters of T in lex. order.

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 47

Why can the BWT be useful in text compression?

• Obs. 1: F = all characters of T in lex. order.

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 47

Why can the BWT be useful in text compression?

• Obs. 1: F = all characters of T in lex. order.

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 47

Why can the BWT be useful in text compression?

• Obs. 1: F = all characters of T in lex. order.

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 47

Why can the BWT be useful in text compression?

• Obs. 1: F = all characters of T in lex. order.

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2

(2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 47

Why can the BWT be useful in text compression?

• Obs. 1: F = all characters of T in lex. order.

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 47

Of course, things are a bit more complicated:

rotation BWT

he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
• many the’s, some he, she, The

Zsuzsanna Lipták Dollar or no dollar, that is the question 8 / 47

Of course, things are a bit more complicated:

rotation BWT

he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
• many the’s, some he, she, The

Zsuzsanna Lipták Dollar or no dollar, that is the question 8 / 47

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding

• nowadays: using RLE (runlength-encoding)
• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 47

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 47

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 47

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 47

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 47

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 47

BWT magic

The BWT . . .

• requires same space as T in bits: n log σ bits σ = alphabetsize

(suffix array: n log n bits, suffix tree: much more—still O(n)) n = |T |
• easier to compress than T , if T repetitive

• very fast (!!!) pattern matching (most basic problem on strings)

• computable in linear time O(n)

• reversible in linear time O(n) nnbaaa,3 7→ banana

• can replace text (suffix array, suffix tree: no)

Zsuzsanna Lipták Dollar or no dollar, that is the question 10 / 47

Compressed data structures for strings

Data structures based on the BWT:

• FM-index [Ferragina and Manzini, FOCS 2000]

• RLFM-index [Mäkinen and Navarro, CPM 2005]

• r -index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

• some recent developments on r -index [Rossi et al. JCB 2022; Giuliani
et al. SEA 2022; Cobas et al. CPM 2021; Boucher et al. SPIRE 2021]

Some tools in bioinformatics (aligners):

• bwa [Durbin and Li, 2009] ca. 41,000 cit.

• bowtie [Langmead and Salzberg, 2010] ca. 36,000 cit.

• soap2 [Li et al., 2009]

• . . .

Zsuzsanna Lipták Dollar or no dollar, that is the question 11 / 47

The parameter r

Def. String T , r = number of runs of bwt(T).

• size of data structures O(r)

• algorithms’ running time ideally a function of r (not of n = |T |)
• increasingly used as a repetitiveness measure of T
• some papers on r :

•Manzini: “An analysis of the Burrows-Wheeler-Transform” [JACM 2001]
•Kempa and Kociumaka: ”Resolution of the Burrows-Wheeler Transform

Conjecture” [FOCS 2020]
•Navarro: “Indexing Highly Repetitive String Collections,

Part I: Repetitiveness Measures” [ACM Comp. Surv., 2021]
•Mantaci et al.: “Measuring the clustering effect of BWT via RLE”

[TCS 2017]

Zsuzsanna Lipták Dollar or no dollar, that is the question 12 / 47

BWT from a combinatorial perspective

• special case of the Gessel-Reutenauer-bijection [Crochemore,
Désarménien, Perrin, 2004]

• introduction of the extended BWT (eBWT), a generalization of the
BWT to multisets of strings [Mantaci et al. 2007]
• strings T with fully clustering BWTs (e.g. bwt(T) = bbbbaaccc)

• full characterization for σ = 2 [Mantaci et al., 2003]
• partial characterization for σ > 2 [Puglisi et al., 2008]
• characterization via interval exchanges [Ferenczi et al., 2013]

• fixpoints of the BWT [Mantaci et al., 2017]

• characterization of BWT images [Likhomanov and Shur, 2011]

Good overview: Rosone and Sciortino: “The Burrows-Wheeler Transform
between Data Compression and Combinatorics on Words.” [CiE 2013]

Zsuzsanna Lipták Dollar or no dollar, that is the question 13 / 47

• two research communities working on the BWT

• (1) data structures and algorithms on strings and
(2) combinatorics on words

• little interaction until . . .

Zsuzsanna Lipták Dollar or no dollar, that is the question 14 / 47

Dagstuhl workshop “25 years of the Burrows-Wheeler-Transform” (2019)
organized by T. Gagie, G. Manzini, G. Navarro, J. Stoye

Zsuzsanna Lipták Dollar or no dollar, that is the question 15 / 47

But: The two communities use slightly different definitions of the BWT:

• Data Structures and Algorithms on Strings:
It is assumed that each string terminates with an end-of-string
character (denoted $, smaller than all others)

T = banana$

• Combinatorics on Words: no such assumption T = banana

Zsuzsanna Lipták Dollar or no dollar, that is the question 16 / 47

But: The two communities use slightly different definitions of the BWT:

• Data Structures and Algorithms on Strings:
It is assumed that each string terminates with an end-of-string
character (denoted $, smaller than all others)

T = banana$

• Combinatorics on Words: no such assumption T = banana

Zsuzsanna Lipták Dollar or no dollar, that is the question 16 / 47

Part II:

Dollar or no dollar,

that is the question

Zsuzsanna Lipták Dollar or no dollar, that is the question 17 / 47

1. The transform itself

Zsuzsanna Lipták Dollar or no dollar, that is the question 18 / 47

Different transforms

banana

abanan

anaban

ananab

banana

nabana

nanaba

nnbaaa

banana$

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

annb$aa

Zsuzsanna Lipták Dollar or no dollar, that is the question 19 / 47

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 20 / 47

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 20 / 47

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 20 / 47

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 20 / 47

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 20 / 47

Different transforms

[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

Thm. There exist strings for which the difference in r is Θ(log n).

• r(T$) increases by log n: Fibonacci words of even order
T = Fib(2k), r(T) = 2, r(T$) = 2k − 1

ex.:
r(Fib(8)) = 2, r(Fib(8)$) = 7
r(Fib(12)) = 2, r(Fib(12)$) = 11

• r(T$) decreases by log n: Fibonacci words of odd order without the
first character T = Fib(2k + 1)[1 :], r(T) = 2k, r(T$) = 5

ex:
r(Fib(13)[1 :]) = 12, r(Fib(13)[1 :]$) = 5
r(Fib(15)[1 :]) = 14, r(Fib(15)[1 :]$) = 5

• both additive and multiplicative difference

Zsuzsanna Lipták Dollar or no dollar, that is the question 21 / 47

Different transforms

[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

Thm. There exist strings for which the difference in r is Θ(log n).

• r(T$) increases by log n: Fibonacci words of even order
T = Fib(2k), r(T) = 2, r(T$) = 2k − 1

ex.:
r(Fib(8)) = 2, r(Fib(8)$) = 7
r(Fib(12)) = 2, r(Fib(12)$) = 11

• r(T$) decreases by log n: Fibonacci words of odd order without the
first character T = Fib(2k + 1)[1 :], r(T) = 2k, r(T$) = 5

ex:
r(Fib(13)[1 :]) = 12, r(Fib(13)[1 :]$) = 5
r(Fib(15)[1 :]) = 14, r(Fib(15)[1 :]$) = 5

• both additive and multiplicative difference

Zsuzsanna Lipták Dollar or no dollar, that is the question 21 / 47

2. BWT construction

Zsuzsanna Lipták Dollar or no dollar, that is the question 22 / 47

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: Li = TSA[i]−1 (recall Obs. 2).

ex. T = b
0
a
1
n
2
a
3
n
4
a
5
$
6
.

SA
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

SA L
6 $banana
5 a$banan
3 ana$ban
1 anana$b
0 banana$
4 na$bana
2 nana$ba

Thus: SA-construction in O(n) time ⇒ BWT-construction in O(n) time.

Zsuzsanna Lipták Dollar or no dollar, that is the question 23 / 47

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: Li = TSA[i]−1 (recall Obs. 2).

ex. T = b
0
a
1
n
2
a
3
n
4
a
5
$
6
.

SA
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

SA L
6 $banana
5 a$banan
3 ana$ban
1 anana$b
0 banana$
4 na$bana
2 nana$ba

Thus: SA-construction in O(n) time ⇒ BWT-construction in O(n) time.

Zsuzsanna Lipták Dollar or no dollar, that is the question 23 / 47

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: Li = TSA[i]−1 (recall Obs. 2).

ex. T = b
0
a
1
n
2
a
3
n
4
a
5
$
6
.

SA
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

SA L
6 $banana
5 a$banan
3 ana$ban
1 anana$b
0 banana$
4 na$bana
2 nana$ba

Thus: SA-construction in O(n) time ⇒ BWT-construction in O(n) time.

Zsuzsanna Lipták Dollar or no dollar, that is the question 23 / 47

BWT construction without dollar

• This works fine if there is a $.

• What if there is no dollar?

Zsuzsanna Lipták Dollar or no dollar, that is the question 24 / 47

BWT construction without dollar

Problem 1:
b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

nnbaaa X

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

nbnaaa 7

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

N.B. sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 47

BWT construction without dollar

Problem 1:
b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

nnbaaa X

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

nbnaaa 7

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

N.B. sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 47

BWT construction without dollar

Problem 1:
b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

nnbaaa X

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

nbnaaa 7

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

N.B. sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 47

BWT construction without dollar

Problem 1:
b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

nnbaaa X

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

nbnaaa 7

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

N.B. sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 47

BWT construction without dollar

Problem 1:
b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

nnbaaa X

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

nbnaaa 7

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

N.B. sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 47

BWT construction without dollar

Problem 1:
b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

nnbaaa X

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

nbnaaa 7

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

N.B. sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 47

BWT construction without dollar

Problem 2: If T not primitive, then CA not defined (several identical
rotations):

n
0
a
1
n
2
a
3
n
4
a
5

= (na)3

CA
1? ananan

3? ananan

5? ananan

0? nanana

2? nanana

4? nanana

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 47

Linear-time BWT construction without dollar

• For $-terminated strings, neither problem exists.

• For Lyndon words (primitive and < all their rotations), neither problem
exists.

• All previous BWT-construction algorithms either use $ or Lyndon rotations.

Our algorithm [Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]:

• first linear-time BWT-construction algorithm which uses neither $ nor
Lyndon rotations

• adaptation of the SAIS-algorithm for SA-construction [Nong et al., 2011]

• previously, SAIS had been adapted for T$ [Okanohara and Sadakane 2009],
and to the bijective BWT [Bannai et al., 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 27 / 47

Our algorithm for BWT construction

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]

1. assign circular types to positions

2. sort LMS-substrings

3. assign new names to LMS-substrings

4. construct new string, solve recursively

5. induce CA from relative order of LMS-positions

0 1 2 3 4 5
b a n a n a
L S L S L S

* * *

Step 1

a b n
S∗ 1 3 5
L 0 2 4
S 5 1 3

5 1 3 0 2 4

Step 2

5 a b a A
1 a n a B
3 a n a B

Step 3

0 1 2
A B B
S L L
*

A B
0

2 1
0 2 1

Step 4

a b n
5 3 1

0 4 2
CA 5 3 1 0 4 2
BWT n n b a a a

Step 5

Zsuzsanna Lipták Dollar or no dollar, that is the question 28 / 47

BWT without dollar

Implementations of SAIS for conjugate array (cais) for

• BWT without $

• eBWT (extended BWT) (see later)

• BBWT (bijective BWT)

• option for including dollar(s)

See https://github.com/davidecenzato/cais

Zsuzsanna Lipták Dollar or no dollar, that is the question 29 / 47

3. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 30 / 47

How to compute the BWT of a multiset of strings?

[Cenzato and L., CPM 2022]

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

It turns out that there are several non-equivalent methods in use:

variant (our result on example tools
terminology)

eBWT CGGGATGTACGTTAAAAA pfpebwt

dollarEBWT GGAAACGG$$$TTACTGTAAA G2BWT, pfpebwt, msbwt
multidolBWT GAGAAGCG$$$TTATCTGAAA BCR, ropebwt2, nvSetBWT,

Merge-BWT, eGSA, eGAP,
bwt-lcp-parallel, gsufsort

concatBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT, tools for single strings
colexBWT AAAGGCGG$$$TTACTGTAAA ropebwt2

Zsuzsanna Lipták Dollar or no dollar, that is the question 31 / 47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})

3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 47

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 47

Interesting intervals

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA

in color: interesting intervals

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 47

Interesting intervals

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA

in color: interesting intervals

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 47

Interesting intervals

An interval [i , j] is interesting if it is the SA-interval of a left-maximal shared
suffix U. Then and only then can two separator-based BWTs differ in [i , j].

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

3 / 9

Interesting intervals

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták

[𝑏. . 𝑒]
𝑈

$2
$4
$5
𝑈 = A$

12 / 26

$1
$2
$3

𝑈 = A$𝑈 = A$

Zsuzsanna Lipták Dollar or no dollar, that is the question 34 / 47

Order of shared suffixes

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example order of shared suffixes

eBWT(M) the extended BWT omega-order of strings
CGGGATGTACGTTAAAAA (mixed in with substrings)

dollarEBWT(M) eBWT({Ti$: Ti ∈M} lexicographic order of strings
GGAAACGG$$$TTACTGTAAA

multidolBWT(M) bwt(T1$1T2$2 · · ·Tk$k) input order of strings
GAGAAGCG$$$TTATCTGAAA

concatBWT(M) bwt(T1$T2$ · · ·Tk$#) lexicographic order of
AAGAGGGC$$$TTACTGTAAA subsequent strings in input

colexBWT(M) multidol(M, γ), γ = colex colexicographic order
AAAGGCGG$$$TTACTGTAAA

In the k-prefix (shared suffix: $) of the BWT we see the output order.

Zsuzsanna Lipták Dollar or no dollar, that is the question 35 / 47

Order of shared suffixes

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example order of shared suffixes

eBWT(M) the extended BWT omega-order of strings
CGGGATGTACGTTAAAAA (mixed in with substrings)

dollarEBWT(M) eBWT({Ti$: Ti ∈M} lexicographic order of strings
GGAAACGG$$$TTACTGTAAA

multidolBWT(M) bwt(T1$1T2$2 · · ·Tk$k) input order of strings
GAGAAGCG$$$TTATCTGAAA

concatBWT(M) bwt(T1$T2$ · · ·Tk$#) lexicographic order of
AAGAGGGC$$$TTACTGTAAA subsequent strings in input

colexBWT(M) multidol(M, γ), γ = colex colexicographic order
AAAGGCGG$$$TTACTGTAAA

In the k-prefix (shared suffix: $) of the BWT we see the output order.

Zsuzsanna Lipták Dollar or no dollar, that is the question 35 / 47

Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

3 / 9

Input order dependence

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták 13 / 26

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

mdolBWT(ℳ1) = GAGAAGCG$$$TTATCTGAAA

mdolBWT(ℳ2) = GGAAAGGC$$$TTACTGTAAA

concBWT(ℳ1) = AAGAGGGC$$$TTACTGTAAA

concBWT(ℳ2) = AGAGACGG$$$TTACTTGAAA

Zsuzsanna Lipták Dollar or no dollar, that is the question 36 / 47

The parameter r
Results regarding r on four short sequence datasets, of all BWT variants.

Left: average runlength (n/r). Right: number of runs r (percentage increase with

respect to the optimal BWT of [Bentley et al., ESA 2020]).

(In each experiment: 500,000 seq.s of length between 50 and 301.)

Zsuzsanna Lipták Dollar or no dollar, that is the question 37 / 47

The different BWT variants

• BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

• we theoretically explained these differences (”interesting intervals”)

• differences especially high on large sets of short sequences

• multidolBWT and concatBWT depend on the input order

• differences extend to parameter r (number of runs of the BWT)
(up to a factor of 4.2 in our experiments)

We suggest

• to standardize the definition of r (colexBWT or optBWT)

• optBWT now implemented (see Cenzato and L., WCTA 2022;
Cenzato, Guerrini, L., Rosone, forthcoming)

Zsuzsanna Lipták Dollar or no dollar, that is the question 38 / 47

The different BWT variants

• BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

• we theoretically explained these differences (”interesting intervals”)

• differences especially high on large sets of short sequences

• multidolBWT and concatBWT depend on the input order

• differences extend to parameter r (number of runs of the BWT)
(up to a factor of 4.2 in our experiments)

We suggest

• to standardize the definition of r (colexBWT or optBWT)

• optBWT now implemented (see Cenzato and L., WCTA 2022;
Cenzato, Guerrini, L., Rosone, forthcoming)

Zsuzsanna Lipták Dollar or no dollar, that is the question 38 / 47

4. A side question

Zsuzsanna Lipták Dollar or no dollar, that is the question 39 / 47

What is the output order of the concatBWT?

ex. M = {ATATG, TGA, ACG, ATCA, GGA} M = [ATATG, TGA, ACG, ATCA, GGA]

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

Map strings to their lexicographic rank:

ACG 7→ a

ATATG 7→ b

ATCA 7→ c

GGA 7→ d

TGA 7→ e

M = ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

Zsuzsanna Lipták Dollar or no dollar, that is the question 40 / 47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index concatBWT rotation
23 A $#ATATG$TGAACGATCA$GGA
10 A ACGATCAGGA#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A GGA#ATATGTGAACG$ATCA

6 G TGAACG$ATCA$GGA$#ATATG

input: b e a c d # output: d e a c b

BWT(beacd#) = de#acb deacb

output = BWT(input#) (remove the # from the output)

Zsuzsanna Lipták Dollar or no dollar, that is the question 41 / 47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index concatBWT rotation
23 A $#ATATG$TGAACGATCA$GGA
10 A ACGATCAGGA#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A GGA#ATATGTGAACG$ATCA

6 G TGAACG$ATCA$GGA$#ATATG

input: b e a c d # output: d e a c b

BWT(beacd#) = de#acb deacb

output = BWT(input#) (remove the # from the output)

Zsuzsanna Lipták Dollar or no dollar, that is the question 41 / 47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index concatBWT rotation
23 A $#ATATG$TGAACGATCA$GGA
10 A ACGATCAGGA#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A GGA#ATATGTGAACG$ATCA

6 G TGAACG$ATCA$GGA$#ATATG

input: b e a c d # output: d e a c b

BWT(beacd#) = de#acb deacb

output = BWT(input#)

(remove the # from the output)

Zsuzsanna Lipták Dollar or no dollar, that is the question 41 / 47

What is the output order of the concatBWT?

M = [ATATG, TGA, ACG, ATCA, GGA]

index concatBWT rotation
23 A $#ATATG$TGAACGATCA$GGA
10 A ACGATCAGGA#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A GGA#ATATGTGAACG$ATCA

6 G TGAACG$ATCA$GGA$#ATATG

input: b e a c d # output: d e a c b

BWT(beacd#) = de#acb deacb

output = BWT(input#) (remove the # from the output)

Zsuzsanna Lipták Dollar or no dollar, that is the question 41 / 47

Part III:

Conclusion

Zsuzsanna Lipták Dollar or no dollar, that is the question 42 / 47

Dollar or no dollar, that is the question.

Zsuzsanna Lipták Dollar or no dollar, that is the question 43 / 47

Dollar or no dollar, that is the question.

Zsuzsanna Lipták Dollar or no dollar, that is the question 43 / 47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar is present

3. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 44 / 47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar is present

3. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 44 / 47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar is present

3. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 44 / 47

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar is present

3. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 44 / 47

Acknowledgements (co-authors)

Marinella Sciortino

(Univ. of Palermo)

Shunsuke Inenanaga

(Kyushu Univ.)

Christina Boucher

(Univ. of Florida)

Massimiliano Rossi

(Illumina Inc.)

Sara Giuliani

(Univ. of Verona)

Davide Cenzato

(Univ. of Verona)

Francesco Masillo

(Univ. of Verona)

Zsuzsanna Lipták Dollar or no dollar, that is the question 45 / 47

Literature

• C. Boucher, D. Cenzato, Zs. Lipták, M. Rossi, M. Sciortino: Computing the
original eBWT faster, simpler, and with less memory. SPIRE 2021.

• S. Giuliani, S. Inenaga, Zs. Lipták, M. Sciortino: On bit catastrophes for the
Burrows-Wheeler-Transform, forthcoming.

• D. Cenzato and Zs. Lipták: A theoretical and experimental analysis of BWT
variants for string collections, CPM 2022.

• D. Cenzato and Zs. Lipták: Computing the optimal BWT using SAIS,
WCTA 2022.

• D. Cenzato, V. Guerrini, Zs. Lipták, and G. Rosone: Computing the optimal
BWT for very large string collections, submitted.

Zsuzsanna Lipták Dollar or no dollar, that is the question 46 / 47

Thank you for your attention!

email: zsuzsanna.liptak@univr.it

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 47

