On the Burrows-Wheeler Transform of string collections

Zsuzsanna Lipták

University of Verona (Italy)

Primavera dell'Informatica Teorica 11 Jan. 2024

The Burrows-Wheeler Transform (BWT)

Ex.: $T=$ banana. The BWT is a permutation of T : nnbaaa

The Burrows-Wheeler Transform (BWT)

Ex.: $T=$ banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)	all rotations, sorted	
banana	\longrightarrow	abanan
ananab	lexicographic	anaban
nanaba	order	ananab
anaban		banana
nabana	nabana	
abanan	nanaba	

The Burrows-Wheeler Transform (BWT)

Ex.: $T=$ banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)	all rotations, sorted	
banana	\longrightarrow	abanan
ananab	lexicographic	anaban
nanaba	order	ananab
anaban		banana
nabana	nabana	
abanan	nanaba	

A (non-efficient) algorithm: List all of rotations of string T, sort them lexicographically, concatenate last characters: bwt(banana) = nnbaaa

Michael Burrows

Paolo Ferragina

AWARDS \& RECOGNITION

Inventors of BW-transform and the FM-index Receive Kanellakis

 Awarde2022

Michael Burrows[${ }^{7}$, Google; Paolo Ferragina[], University of Pisa; and Giovanni Manzini © ${ }^{\circ}$, University of Pisa, receive the ACM Paris Kanellakis Theory and Practice AwardC' for inventing the BWtransform and the FM-index that opened and influenced the field of Compressed Data Structures with fundamental impact on Data Compression and Computational Biology. In 1994, Burrows and his late coauthor David Wheeler published their paper describing revolutionary data compression algorithm based on a reversible transformation of the input-the "Burrows-Wheeler Transform" (BWT). A few years later, Ferragina and Manzini showed that, by orchestrating the BWT with a new set of mathematical techniques and algorithmic tools, it became possible to build a "compressed index," later called the FM-index. The introduction of the BW Transform and the development of the FM-index have had a profound impact on the theory of algorithms and data structures with fundamental advancements.

The BWT

- introduced by M. Burrows and D. Wheeler in 1994 as a lossless text compression algorithm

- P. Ferragina and G. Manzini showed later how to use it for pattern matching, leading to the FM-index [FOCS, 2000; JACM 2005]
- recent: r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

The BWT

- introduced by M. Burrows and D. Wheeler in 1994 as a lossless text compression algorithm

source: Adjeroh, Bell, Mukerjee (2008)
- P. Ferragina and G. Manzini showed later how to use it for pattern matching, leading to the FM-index [FOCS, 2000; JACM 2005]
- recent: r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

Some properties of the BWT:

- computable in linear time $\mathcal{O}(n)$ $n=|T|$
- reversible in linear time $\mathcal{O}(n)$
- uncompressed: same space as text
- if T repetitive, good for compression (see later)

GenBank and WGS Statistics

From strings to string collections

- Human Genome Project (first draft: 2000, completion: 2003)

From strings to string collections

- Human Genome Project (first draft: 2000, completion: 2003)
- Studying variation:
- 1,000 Genomes Project (human): 2008-2015
- 1001 Genomes (Arabidopsis thaliana)
- 3,000 Rice Genomes Project
- 100,000 Genomes Project (human, completed 2018)

From strings to string collections

- Human Genome Project (first draft: 2000, completion: 2003)
- Studying variation:
- 1,000 Genomes Project (human): 2008-2015
- 1001 Genomes (Arabidopsis thaliana)
- 3,000 Rice Genomes Project
- 100,000 Genomes Project (human, completed 2018)
- Population-wide:
- Faroe Genome Project: sequence all 50,000 people
- Sequencing Iceland (325,000 people): $>57,000$ sequenced

From strings to string collections

- Human Genome Project (first draft: 2000, completion: 2003)
- Studying variation:
- 1,000 Genomes Project (human): 2008-2015
- 1001 Genomes (Arabidopsis thaliana)
- 3,000 Rice Genomes Project
- 100,000 Genomes Project (human, completed 2018)
- Population-wide:
- Faroe Genome Project: sequence all 50,000 people
- Sequencing Iceland (325,000 people): > 57,000 sequenced
- Human diversity:
- Genes \& Health in East London: 100,000 people of Bangladeshi and Pakistani origin
- Sequencing African genomes (Nature 2020)
- Sequencing indigenous Australian genomes (Nature 2023)

From strings to string collections

- Human Genome Project (first draft: 2000, completion: 2003)
- Studying variation:
- 1,000 Genomes Project (human): 2008-2015
- 1001 Genomes (Arabidopsis thaliana)
- 3,000 Rice Genomes Project
- 100,000 Genomes Project (human, completed 2018)
- Population-wide:
- Faroe Genome Project: sequence all 50,000 people
- Sequencing Iceland (325,000 people): > 57,000 sequenced
- Human diversity:
- Genes \& Health in East London: 100,000 people of Bangladeshi and Pakistani origin
- Sequencing African genomes (Nature 2020)
- Sequencing indigenous Australian genomes (Nature 2023)
- SARS-CoV-2 viral sequences

From strings to string collections

Our data is

- growing rapidly, and
- changing: from individual strings to string collections
- many of these consist of many similar copies of the same string

Outline of talk

- The Burrows-Wheeler Transform (BWT)
- The extended BWT (eBWT)
- Other variants of the BWT for string collections
- Why does it matter?
- Conclusions

The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

Recall: $T=$ banana. The BWT is a permutation of T : nnbaaa
all rotations (conjugates)

all rotations, sorted
abanan
anaban
ananab
banana
nabana
nanaba

Why is the BWT useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

F L

1 abanan
2 anaban
3 ananab
4 banana
5 nabana
6 nanaba

Why is the BWT useful in text compression?

BWT-matrix ($F=$ first column, $L=$ last column)

1 abanan
2 anaban
3 ananab
4 banana
5 nabana
6 nanaba

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order: aaabnn

Why is the BWT useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

1 abanan
2 anaban
3 ananab
4 banana
5 nabana
6 nanaba

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order: aaabnn
- Obs. 2: for all $i: L_{i}$ precedes F_{i} in T (cyclically): $T=\underset{123456}{ }$

Why is the BWT useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

1 abanan
2 anaban
3 ananab
4 banana
5 nabana
6 nanaba

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order: aaabnn
- Obs. 2: for all $i: L_{i}$ precedes F_{i} in T (cyclically): $T=\underset{123456}{ }$
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Why is the BWT useful in text compression?

- Obs. 1: $\mathrm{F}=$ characters of T in lexicographic order
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Why is the BWT useful in text compression?

- Obs. 1: $\mathrm{F}=$ characters of T in lexicographic order
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: $T=$ banana has $\underline{2}$ occurrences of the substring ana
2 occ's of ana
abanan
anaban
ananab
banana
nabana
nanaba

Why is the BWT useful in text compression?

- Obs. 1: $\mathrm{F}=$ characters of T in lexicographic order
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: $T=$ banana has $\underline{2}$ occurrences of the substring ana

2 occ's of ana	2 occ's of na preceded by a
abanan	abanan
anaban	anaban
ananab	ananab
banana	banana
nabana	nabana
nanaba	nanaba

Why is the BWT useful in text compression?

- Obs. 1: $\mathrm{F}=$ characters of T in lexicographic order
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: $T=$ banana has $\underline{2}$ occurrences of the substring ana

2 occ's of ana	2 occ's of na preceded by a	2 occ's of a preceded by n
abanan	abanan	abanan
anaban	anaban	anaban
ananab	ananab	ananab
banana	banana	banana
nabana	nabana	nabana
nanaba	nanaba	nanaba

Why is the BWT useful in text compression?

- Obs. 1: $\mathrm{F}=$ characters of T in lexicographic order
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: $T=$ banana has 2 occurrences of the substring ana

2 occ's of ana	2 occ's of na preceded by a	2 occ's of a preceded by n
abanan	abanan	abanan
anaban	anaban	anaban
ananab	ananab	ananab
banana	banana	banana
nabana	nabana	nabana
nanaba	nanaba	nanaba

So: we get a run of a's of length 2, and a run of n's of length 2

Why is the BWT useful in text compression?

- Obs. 1: $\mathrm{F}=$ characters of T in lexicographic order
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: $T=$ banana has 2 occurrences of the substring ana

2 occ's of ana	2 occ's of na preceded by a	2 occ's of a preceded by n
abanan	abanan	abanan
anaban	anaban	anaban
ananab	ananab	ananab
banana	banana	banana
nabana	nabana	nabana
nanaba	nanaba	nanaba

So: we get a run of a's of length 2 , and a run of n's of length $2(2=$ no. occ's $)$.

Of course, things are a bit more complicated in general:

Of course, things are a bit more complicated in general:

rotation

he caverns measureless to man, And sank in tumult to a t
he caves. It was a miracle of rare device, A sunny pleasure-... t
he dome of pleasure Floated midway on the waves; Where was t
he fountain and the caves. It was a miracle of rare device, t
he green hill athwart a cedarn cover! A savage place! as t
he hills, Enfolding sunny spots of greenery. But oh! that t
he milk of Paradise. t
he mingled measure From the fountain and the caves. It was a t
he on honey-dew hath fed, And drunk the milk of Paradise. -
he played, Singing of Mount Abora. Could I revive within me s
he sacred river ran, Then reached the caverns measureless t
he sacred river, ran Through caverns measureless to man t
he sacred river. Five miles meandering with a mazy motion t
he shadow of the dome of pleasure Floated midway on the waves T
he thresher's flail: And mid these dancing rocks at once and t
he waves; Where was heard the mingled measure From the t
Kubla Kahn by Samuel Coleridge

Of course, things are a bit more complicated in general:
he caverns measureless to man, And sank in tumult to a t
he caves. It was a miracle of rare device, A sunny pleasure-... t
he dome of pleasure Floated midway on the waves; Where was t
he fountain and the caves. It was a miracle of rare device, t
he green hill athwart a cedarn cover! A savage place! as t
he hills, Enfolding sunny spots of greenery. But oh! that t
he milk of Paradise. t
he mingled measure From the fountain and the caves. It was a t
he on honey-dew hath fed, And drunk the milk of Paradise. -
he played, Singing of Mount Abora. Could I revive within me S
he sacred river ran, Then reached the caverns measureless t
he sacred river, ran Through caverns measureless to man t
he sacred river. Five miles meandering with a mazy motion t
he shadow of the dome of pleasure Floated midway on the waves T
he thresher's flail: And mid these dancing rocks at once and t
he waves; Where was heard the mingled measure From the t

Compression with the BWT

- takes advantage of this 'clustering effect'

Compression with the BWT

- takes advantage of this 'clustering effect'
- Def.: $r(T)=$ number of runs of bwt (T) (run: maximal equal-letter run)

Ex.: $r($ banana $)=3$
bwt $($ banana $)=$ nnbaaa

Compression with the BWT

- takes advantage of this 'clustering effect'
- Def.: $r(T)=$ number of runs of $\operatorname{bwt}(T)$ (run: maximal equal-letter run)

Ex.: $r($ banana $)=3$
bwt $($ banana $)=$ nnbaaa

- compression with BWT: uses runlength-encoding (RLE)

Compression with the BWT

- takes advantage of this 'clustering effect'
- Def.: $r(T)=$ number of runs of $\operatorname{bwt}(T)$ (run: maximal equal-letter run)

Ex.: $r($ banana $)=3$
bwt $($ banana $)=$ nnbaaa

- compression with BWT: uses runlength-encoding (RLE)
replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaabb) $=\mathrm{b} 8 \mathrm{c} 1 \mathrm{a} 11 \mathrm{~b} 2$

Compression with the BWT

- takes advantage of this 'clustering effect'
- Def.: $r(T)=$ number of runs of bwt (T) (run: maximal equal-letter run)
- compression with BWT: uses runlength-encoding (RLE)
replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaabb) $=$ b8c1a11b2
Compression: $T \mapsto \underbrace{\operatorname{RLE}(\operatorname{bwt}(T))}_{\text {storage space: } O(r)}$

$$
\begin{array}{r}
\text { Ex.: } r(\text { banana })=3 \\
\text { bwt }(\text { banana })=\text { nnbaaa }
\end{array}
$$

Compression with the BWT

- takes advantage of this 'clustering effect'
- Def.: $r(T)=$ number of runs of $\operatorname{bwt}(T)$ (run: maximal equal-letter run)

Ex.: $r($ banana $)=3$
bwt $($ banana $)=$ nnbaaa

- compression with BWT: uses runlength-encoding (RLE)
replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaabb) $=$ b8c1a11b2
Compression: $T \mapsto \underbrace{\operatorname{RLE}(\operatorname{bwt}(T))}_{\text {storage space: } O(r)}$
Ex.: banana \mapsto n2b1a3
- good if r is much smaller than $n=|T|$ (i.e. if few runs)

Compression with the BWT

- takes advantage of this 'clustering effect'
- Def.: $r(T)=$ number of runs of bwt (T) (run: maximal equal-letter run)

Ex.: $r($ banana $)=3$
bwt $($ banana $)=$ nnbaaa

- compression with BWT: uses runlength-encoding (RLE)
replace each run by (char,int)-pair
$\operatorname{RLE}(\mathrm{bbbbbbbbcaaaaaaaa} a \mathrm{abb})=\mathrm{b} 8 \mathrm{c} 1 \mathrm{a} 11 \mathrm{~b} 2$
Compression: $T \mapsto \underbrace{\operatorname{RLE}(\operatorname{bwt}(T))}_{\text {storage space: } O(r)}$
Ex.: banana \mapsto n2b1a3
- good if r is much smaller than $n=|T|$ (i.e. if few runs)
- for repetitive strings, r is small (repetitive: many repeated substrings)

Reversing the BWT (lossless compression)

input: nnbaaa, 4
output: (wanted) banana.
$\operatorname{bwt}(T)$, i : where $1 \leq i \leq n$
T : i 'th rotation lex.ly

Reversing the BWT (lossless compression)

input: nnbaaa, 4
output: (wanted) banana.
$\operatorname{bwt}(T), i$: where $1 \leq i \leq n$
T : i 'th rotation lex.ly

Thm. (LF-property): The j 'th occurrence of character x in L is the j 'th occurrence of character x in F.

	$\mathrm{F} \quad \mathrm{L}$
1	abanan
2	anaban
3	ananab
4	banana
5	nabana
6	nanaba

Reversing the BWT (lossless compression)

input: nnbaaa, 4
output: (wanted) banana.
$\operatorname{bwt}(T), i$: where $1 \leq i \leq n$
T : i 'th rotation lex.ly

Thm. (LF-property): The j 'th occurrence of character x in L is the j 'th occurrence of character x in F.

	$\mathrm{F} \quad \mathrm{L}$
1	abanan
2	anaban
3	ananab
4	banana
5	nabana
6	nanaba

$$
T=\underset{123456}{ }
$$

Recall:
Obs. 1: $\mathrm{F}=$ all characters of T in lex-order:
Obs. 2: for all $i: L_{i}$ precedes F_{i} in T.

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	L
1	n
2	n
3	b
4	a
5	a
6	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

Reversing the BWT

- Obs. 1: $\mathrm{F}=$ all characters of T in lex-order
- Obs. 2: L_{i} precedes F_{i} in T
- LF-property: The j 'th x in L is the j 'th x in F.
input: nnbaaa, 4

	F	L
1	a	n
2	a	n
3	a	b
4	b	a
5	n	a
6	n	a

The BWT of string collections

- The BWT is good on repetitive strings.
- Our string collections are highly repetitive: many similar copies of the same string
- But: how do we compute the BWT of a multiset?

The BWT of string collections

- The BWT is good on repetitive strings.
- Our string collections are highly repetitive: many similar copies of the same string
- But: how do we compute the BWT of a multiset?

Generalization of the BWT to multisets: the extended BWT (eBWT) (next)

The extended BWT

The extended BWT

[Mantaci, Restivo, Rosone, Sciortino, TCS, 2007]

Ex. $\mathcal{M}=\{$ bana, an $\}$. The eBWT is a permutation of the characters of $\mathcal{M}: \operatorname{eBWT}(\mathcal{M})=$ nbnaaa.

all rotations (conjugates)	all rotations, sorted	
bana	aban	n
anab		anab
naba	an	
aban	an	n
an	bana	a
na	naba	a
	na	a

N.B. anab $<_{\omega}$ an, since $\operatorname{anab} \cdot \operatorname{anab} \cdot \cdot<_{\text {lex }}$ an $\cdot \mathrm{an} \cdot \mathrm{an} \cdot \mathrm{an} \cdot \cdots$

The extended BWT

Def.(omega-order): $T<{ }_{\omega} S$ if (a) $T^{\omega}<_{\text {lex }} S^{\omega}$, or
(b) $T^{\omega}=S^{\omega}, T=U^{k}, S=U^{m}$ and $k<m$

$\mathcal{M}=\{$ bana, an	omega-order		lex-order
	aban	n	aban
n			
	anab	b	an
n			
	an	n	anab
b			
	bana	a	bana
a			
	naba	a	na
na	a		
	na	a	naba

N.B. With the lex-order, the LF-property would not hold!

The extended BWT

- omega-order instead of lex-order
- same as lex-order if neither string is prefix of the other
- omega-order necessary for the LF-property
- the eBWT inherits BWT properties: clustering effect, reversibility, useful for lossless text compression, efficient pattern matching, ...
- However, until recently no linear-time algorithm known.

The extended BWT

- omega-order instead of lex-order
- same as lex-order if neither string is prefix of the other
- omega-order necessary for the LF-property
- the eBWT inherits BWT properties: clustering effect, reversibility, useful for lossless text compression, efficient pattern matching, ...
- However, until recently no linear-time algorithm known.

2021:

- linear-time algorithm [Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021]
- We simplified this algorithm, and
- gave first efficient implementations of the eBWT: tools pfpebwt, cais [Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

Other BWT variants for string collections

The BWT of string collections

[Cenzato and L., CPM 2022, Arxiv 2023]
Question: How do dedicated tools compute the BWT of a string collection? (string collection: multiset of strings)

- We studied 18 publicly available tools.
- Only ours compute the eBWT (pfpebwt, cais).
- We identified 4 more non-equivalent approaches: the resulting BWTs are all different.
- Often the method is not explicitly stated.
- Underlying assumption: they are all the same.
- But they differ a lot (Hamming distance, number of runs).
- N.B.: all BWT variants are correct (LF-property, ...)

The other BWT variants for string collections

The different approaches are:

1. extended BWT of strings with terminator symbol \$ (dollarEBWT)
2. concatenate strings, separating them with different dollars (multidoIBWT)
3. first sort colexicographically, then do 2 . (colexBWT)
4. concatenate strings, separating them with same dollar (concatBWT)

All use terminator / separator symbols ('dollars'). So we call them separator-based BWT variants.

The BWT variants for string collections

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$

variant (our terminology)	result on example	tools
eBWT	CGGGATGTACGTTAAAAA	pfpebwt, cais
dollarEBWT	GGAAACGG\$\$\$TTACTGT\$AAA\$	G2BWT, msbwt
multidolBWT	GAGAAGCG\$\$\$TTATCTG\$AAA\$	gsufsort, ropebwt2, eGSA, Merge-BWT, eGAP, nvSetBWT, BCR-LCP-GSA, grlBWT, BEETL, bwt-lcp-parallel
colexBWT	AAAGGCGG\$\$\$TTACTGT\$AAA\$	ropebwt2, BCR-LCP-GSA
concatBWT	\$AAGAGGGC\$\#\$TTACTGT\$AAA\$	BigBWT, r-pfbwt, CMS-BWT tools for single strings

The dollar-eBWT

1. dollarEBWT $(\mathcal{M})=\operatorname{eBWT}\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right), \quad \$<c$ for all char's c Now no string is prefix of another \Longrightarrow omega-order same as lex-order.

\[

\]

The dollar-eBWT

1. dollarEBWT $(\mathcal{M})=\operatorname{eBWT}\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right), \quad \$<c$ for all char's c Now no string is prefix of another \Longrightarrow omega-order same as lex-order.

\[

\]

The different BWT variants

The other 3 methods concatenate the input strings, and then apply the classical BWT.

The main issue here is to avoid spurious substrings:

The multidollar BWT

2. multidolBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \$_{k}\right)$, where dollars are smaller than characters from Σ, and $\$_{1}<\$_{2}<\ldots<\$_{k}$

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\} \rightsquigarrow$
bwt $\left(\right.$ ATATG $\$_{1} T G A \$_{2}$ ACG $_{3}$ ATCA $\left._{4} G G A \$_{5}\right)=$ GAGAAGCG $\$ \$ \$ T A T C T G \$ A A A \$$

The multidollar BWT

2. multidolBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \$_{k}\right)$, where dollars are smaller than characters from Σ, and $\$_{1}<\$_{2}<\ldots<\$_{k}$

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\} \rightsquigarrow$ $\operatorname{bwt}\left(\mathrm{ATATG} \$_{1} \mathrm{TGA} \$_{2} \mathrm{ACG}_{3}\right.$ ATCA $\left._{4} G G A \$_{5}\right)=$ GAGAAGCG $\$ \$$ TTATCTG\$AAA\$

- most commonly used method
- analogous to Generalized Suffix Tree and Generalized Suffix Array
- dollars are different only conceptually (break ties by index)
- equivalent: concatenate without separators, use bitstring marking string beginnings

The colex BWT

3. colexBWT (\mathcal{M}) : multidolBWT of the strings in colexicographic order colex order $=$ lexicographic order of the reverse strings

The colex BWT

3. colexBWT (\mathcal{M}) : multidolBWT of the strings in colexicographic order colex order $=$ lexicographic order of the reverse strings

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$
colex order: ATCA , GGA, TGA , ACG, ATATG \rightsquigarrow
$\operatorname{bwt}\left(\right.$ ATCA $\$_{1} G G A \$_{2}$ TGA $\$_{3} A C G \$_{4}$ ATATG $\left._{5}\right)=$ AAAGGCGG\$\$\$TTACTGT\$AAA\$

The colex BWT

3. colexBWT (\mathcal{M}) : multidolBWT of the strings in colexicographic order colex order $=$ lexicographic order of the reverse strings
```
Ex. }\mathcal{M}={\mathrm{ ATATG, TGA, ACG, ATCA, GGA }
colex order: ATCA, GGA,TGA,ACG, ATATG }
bwt(ATCA$ $GGA$ TGA$ $ACG$ $4TATG$ $ ) = AAAGGCGG$$$TTACTGT$AAA$
```

- reduces number of runs (see later)
- implemented as an option in ropebwt2,BCR-LCP-GSA

The concat BWT

4. concatBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$, where $\#<\$$

The concat BWT

4. concatBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$, where $\#<\$$

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\} \rightsquigarrow$
bwt(ATATG\$TGA\$ACG\$ATCA\$GGA\$\#) = \$AAGAGGGC\$\#\$TTACTGT\$AAA\$

The concat BWT

4. concatBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$, where $\#<\$$

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\} \rightsquigarrow$
bwt(ATATG\$TGA\$ACG\$ATCA\$GGA\$\#) = \$AAGAGGGC\$\#\$TTACTGT\$AAA\$
(for easier comparison, we simplify to AAGAGGGC\$\$\$TTACTGT\$AAA\$)

The concat BWT

4. concatBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$, where $\#<\$$

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\} \rightsquigarrow$
bwt(ATATG\$TGA\$ACG\$ATCA\$GGA\$\#) = \$AAGAGGGC\$\#\$TTACTGT\$AAA\$
(for easier comparison, we simplify to AAGAGGGC\$\$\$TTACTGT\$AAA\$)

- very easy to implement
- used e.g. in BigBWT, CMS-BWT.

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$

BWT variant	example	
non-sep.based		
eBWT (\mathcal{M})	CGGGATGTACGTTAAAAA	
separator-based		
dollarEBWT (\mathcal{M})	GGAAACGG\$\$\$TTACTGT\$AAA\$	
multidoIBWT (\mathcal{M})	GAGAAGCG\$\$\$TATCTG\$AAA\$	
colexBWT (\mathcal{M})	AAAGGCGG\$\$\$TTACTGT\$AAA\$	
concatBWT (\mathcal{M})	AAGAGGGC\$\$\$TTACTGT\$AAA\$	

in color: interesting intervals

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then $i \in[b, e]$ for some interesting interval $[b, e]$.

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then $i \in[b, e]$ for some interesting interval $[b, e]$.

Def. U is called a left-maximal shared suffix if there exist two strings $S_{1}, S_{2} \in \mathcal{M}$ such that U is a suffix of $S_{1} \$$ and $S_{2} \$$ and is preceded by different characters in S_{1} and S_{2}. An interval $[b, e]$ is interesting if it corresponds to all occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. $\mathcal{M}=\{$ ATATG, TG $\underline{A}, \operatorname{ACG}, \operatorname{ATC} \underline{A}, G \underline{A} \underline{\}}, U=A \$$.

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then $i \in[b, e]$ for some interesting interval $[b, e]$.

Def. U is called a left-maximal shared suffix if there exist two strings $S_{1}, S_{2} \in \mathcal{M}$ such that U is a suffix of $S_{1} \$$ and $S_{2} \$$ and is preceded by different characters in S_{1} and S_{2}. An interval $[b, e]$ is interesting if it corresponds to all occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. $\mathcal{M}=\{$ ATATG, TG $\underline{A}, \operatorname{ACG}, \operatorname{ATC} \underline{A}, G \underline{A} \underline{\}}, U=A \$$.

$$
\begin{array}{ll}
\text { A\$ATC } & \text { C } \\
\text { A\$GG } & \text { G } \\
\text { A\$TG } & \text { G } \\
\text { dollarEBWT }
\end{array}
$$

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then $i \in[b, e]$ for some interesting interval $[b, e]$.

Def. U is called a left-maximal shared suffix if there exist two strings $S_{1}, S_{2} \in \mathcal{M}$ such that U is a suffix of $S_{1} \$$ and $S_{2} \$$ and is preceded by different characters in S_{1} and S_{2}. An interval $[b, e]$ is interesting if it corresponds to all occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. $\mathcal{M}=\{$ ATATG, TG $\underline{A}, \operatorname{ACG}, \operatorname{ATC} \underline{A}, G \underline{A} \underline{\}}, U=A \$$.

A\$ATC	C	$\mathrm{A} \$_{2} \cdots$	G
$\mathrm{A} \$ \mathrm{GG}$	G	$\mathrm{A} \$_{4} \cdots$	C
$\mathrm{A} \$ \mathrm{TG}$	G	$\mathrm{A} \$_{5} \cdots$	G
dollarEBWT		multidolBWT	

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then $i \in[b, e]$ for some interesting interval $[b, e]$.

Def. U is called a left-maximal shared suffix if there exist two strings $S_{1}, S_{2} \in \mathcal{M}$ such that U is a suffix of $S_{1} \$$ and $S_{2} \$$ and is preceded by different characters in S_{1} and S_{2}. An interval $[b, e]$ is interesting if it corresponds to all occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. $\mathcal{M}=\{$ ATATG, TG $\underline{A}, \operatorname{ACG}, \operatorname{ATC} \underline{A}, G \underline{A} \underline{\}}, U=A \$$.

A\$ATC	C	$\mathrm{A} \$_{2} \cdots$	G	$\mathrm{A} \$_{1} \cdots$	C
A\$GG	G	$\mathrm{A} \$_{4} \cdots$	C	$\mathrm{A} \$_{2} \cdots$	G
A\$TG	G	$\mathrm{A} \$_{5} \cdots$	G	$\mathrm{A} \$_{3} \cdots$	G
dollarEBWT	multidolBWT	colexBWT			

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then $i \in[b, e]$ for some interesting interval $[b, e]$.

Def. U is called a left-maximal shared suffix if there exist two strings $S_{1}, S_{2} \in \mathcal{M}$ such that U is a suffix of $S_{1} \$$ and $S_{2} \$$ and is preceded by different characters in S_{1} and S_{2}. An interval $[b, e]$ is interesting if it corresponds to all occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. $\mathcal{M}=\{$ ATATG, TG $\underline{A}, \operatorname{ACG}, \operatorname{ATC} \underline{A}, G \underline{A} \underline{\}}, U=A \$$.

A\$ATC	C	$\mathrm{A} \$_{2} \cdots$	G	$\mathrm{A} \$_{1} \cdots$	C	$\mathrm{A} \$ \#$	G
$\mathrm{A} \$ \mathrm{GG}$	G	$\mathrm{A} \$_{4} \cdots$	C	$\mathrm{A} \$_{2} \cdots$	G	$\mathrm{A} \$ \mathrm{~A} \cdots$	G
$\mathrm{A} \$ \mathrm{TG}$	G	$\mathrm{A} \$_{5} \cdots$	G	$\mathrm{A} \$_{3} \cdots$	G	$\mathrm{A} \$ \mathrm{G} \cdots$	C
dollarEBWT	multidolBWT	colexBWT	concatBWT				

Hamming distance between separator-based BWTs

Variability
$\operatorname{var}(\mathcal{M})=\frac{\sum_{[b, e] \text { interesting int. }} \operatorname{var}([b, e])}{\sum_{[b, e] \text { interesting int. }}(e-b+1)}$, where $\operatorname{var}([b, e])=\max$ no. runs in $[b, e]$ (depends on Parikh vector)

Why does it matter?

Theoretician: You are all using different methods to compute the BWT of string collections, and the results are pretty different!

Theoretician: You are all using different methods to compute the BWT of string collections, and the results are pretty different!

Programmer: It doesn't matter, all I care about is that it's efficient.

Theoretician: You are all using different methods to compute the BWT of string collections, and the results are pretty different!

Programmer: It doesn't matter, all I care about is that it's efficient.
Theoretician: ... and correct?

Theoretician: You are all using different methods to compute the BWT of string collections, and the results are pretty different!

Programmer: It doesn't matter, all I care about is that it's efficient.

Theoretician:and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: You are all using different methods to compute the BWT of string collections, and the results are pretty different!

Programmer: It doesn't matter, all I care about is that it's efficient.

Theoretician:and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it's not nice that your tool computes a different thing from your competitor's.

Theoretician: You are all using different methods to compute the BWT of string collections, and the results are pretty different!

Programmer: It doesn't matter, all I care about is that it's efficient.

Theoretician:and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it's not nice that your tool computes a different thing from your competitor's.

Programmer: I am never going to use her tool anyway!

Why you should care

1. number of runs
2. the parameter r is not well-defined
3. input order dependence

1. Number of runs

$$
r=\text { number of runs of the BWT. }
$$

1. Number of runs

$$
r=\text { number of runs of the BWT. }
$$

Ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$

BWT variant	example	r	r w/o \$'s
non-sep.based			
eBWT (\mathcal{M})	CGGGATGTACGTTAAAAA	11	11
separator-based			
dollarEBWT (\mathcal{M})	GGAAACGG\$\$\$TTACTGT\$AAA\$	14	11
multidoIBWT (\mathcal{M})	GAGAAGCG\$\$\$TTATCTG\$AAA\$	17	14
colexBWT (\mathcal{M})	AAAGGCGG\$\$\$TTACTGT\$AAA\$	14	11
concatBWT (\mathcal{M})	AAGAGGGC\$\$\$TTACTGT\$AAA\$	15	12

1. Number of runs

Average runlength (n / r) on four short sequence datasets, of all BWT variants. (500,000 sequences each, of length between 50 and 301.)

1. Number of runs

Average runlength (n / r) on four short sequence datasets, of all BWT variants. (500,000 sequences each, of length between 50 and 301.)

- On these datasets, difference of a factor of up to 4.2.
- In a separate work, difference of a factor of up to 31.
[Cenzato, Guerrini, L., Rosone, DCC 2023]
size of data structures $\mathcal{O}(r)$

So maybe you should care. . .

2. The parameter r

- size of data structures $\mathcal{O}(r)$ (r-index)

Gagie et al. [JACM 2020], Bannai et al. [TCS 2020]

2. The parameter r

- size of data structures $\mathcal{O}(r)(r$-index $)$

Gagie et al. [JACM 2020], Bannai et al. [TCS 2020]

- algorithms' running time ideally a function of r (not of $n=|T|)$

2. The parameter r

- size of data structures $\mathcal{O}(r)$ (r-index)

Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

- algorithms' running time ideally a function of r (not of $n=|T|)$
- increasingly used as a repetitiveness measure of T, similar to z (number of Lempel-Ziv phrases)
- as a property of the dataset

Bannai et al. [TCS 2020], Boucher et al. [ALENEX 2021],

Cobas et al. [CPM 2021]

2. The parameter r

- size of data structures $\mathcal{O}(r)$ (r-index) Gagie et al. [JACM 2020], Bannai et al. [TCS 2020]
- algorithms' running time ideally a function of r (not of $n=|T|)$
- increasingly used as a repetitiveness measure of T, similar to z (number of Lempel-Ziv phrases)
- as a property of the dataset

Bannai et al. [TCS 2020], Boucher et al. [ALENEX 2021],

Cobas et al. [CPM 2021]

- in theoretical work on repetitiveness measures

Kempa and Kociumaka [FOCS 2020],
Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]

3. Input order dependence

3. Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

```
\mathcal{M}
```



```
mdolBWT}(\mp@subsup{\mathcal{M}}{2}{})=\mathrm{ GGAAAGGC$$$TTACTGT$AAA$
```

$\mathcal{M}_{1}=[$ ATATG , TGA , ACG , ATCA , GGA $]$
$\mathcal{M}_{2}=[$ ACG, ATATG, GGA, TGA , ATCA $]$
$\operatorname{concBWT}\left(\mathcal{M}_{1}\right)=$ AAGAGGGC\$\$\$TTACTGT\$AAA\$ $\operatorname{concBWT}\left(\mathcal{M}_{2}\right)=$ AGAGACGG\$\$\$TTACTTG\$AAA\$

3. Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

```
\mathcal{M}
    M}\mp@subsup{M}{2}{}=[ACG,ATATG,GGA,TGA,ATCA
mdolBWT}(\mp@subsup{\mathcal{M}}{2}{})=GGGAAAGGC$$$TTACTGT$AAA$
\(\mathcal{M}_{1}=[\) ATATG, TGA , ACG , ATCA , GGA
concBWT \(\left(\mathcal{M}_{1}\right)=\) AAGAGGGC\$\$\$TTACTGT\$AAA\$ concBWT \(\left(\mathcal{M}_{2}\right)=\) AGAGACGG \(\$ \$ \$ T T A C T T G \$ A A A \$\)
```

Thus, giving the same dataset to the same tool but in different order can produce very different results! (incl. the number of runs)

The multidollar BWT can simulate all others

Prop. Let \mathcal{M} be given, and L some separator-based BWT on \mathcal{M}. Then there exists an input permutation π such that multidol $(\pi(\mathcal{M}))=L$.

The multidollar BWT can simulate all others

Prop. Let \mathcal{M} be given, and L some separator-based BWT on \mathcal{M}. Then there exists an input permutation π such that multidol $(\pi(\mathcal{M}))=L$. Proof sketch: colexBWT: colex order, dollarEBWT: lex order, concatBWT: lex order of subseq strings

The multidollar BWT can simulate all others

Prop. Let \mathcal{M} be given, and L some separator-based BWT on \mathcal{M}. Then there exists an input permutation π such that multidol $(\pi(\mathcal{M}))=L$. Proof sketch: colexBWT: colex order, dollarEBWT: lex order, concatBWT: lex order of subseq strings

- Prop. \Longrightarrow any separator-based BWT variant can be computed using the multidollar method

The multidollar BWT can simulate all others

Prop. Let \mathcal{M} be given, and L some separator-based BWT on \mathcal{M}. Then there exists an input permutation π such that multidol $(\pi(\mathcal{M}))=L$.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order, concatBWT: lex order of subseq strings

- Prop. \Longrightarrow any separator-based BWT variant can be computed using the multidollar method
- Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time algorithm for the input order of multidollar BWT with minimum r

The multidollar BWT can simulate all others

Prop. Let \mathcal{M} be given, and L some separator-based BWT on \mathcal{M}. Then there exists an input permutation π such that multidol $(\pi(\mathcal{M}))=L$.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order, concatBWT: lex order of subseq strings

- Prop. \Longrightarrow any separator-based BWT variant can be computed using the multidollar method
- Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time algorithm for the input order of multidollar BWT with minimum r
- We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Conclusions

Conclusions

- there are different ways of computing the BWT of a string collection
- these are non-equivalent
- the most commonly used ones are input-order dependent
- the number of runs r varies significantly

Conclusions

- there are different ways of computing the BWT of a string collection
- these are non-equivalent
- the most commonly used ones are input-order dependent
- the number of runs r varies significantly
- \Longrightarrow different tools on the same dataset can produce different size data structures

Conclusions

- there are different ways of computing the BWT of a string collection
- these are non-equivalent
- the most commonly used ones are input-order dependent
- the number of runs r varies significantly
- \Longrightarrow different tools on the same dataset can produce different size data structures
- \Longrightarrow the same tool on the same dataset can produce different size data structures

Conclusions

- there are different ways of computing the BWT of a string collection
- these are non-equivalent
- the most commonly used ones are input-order dependent
- the number of runs r varies significantly
- \Longrightarrow different tools on the same dataset can produce different size data structures
- \Longrightarrow the same tool on the same dataset can produce different size data structures
- optBWT minimizes r, and has been implemented

Conclusions

- there are different ways of computing the BWT of a string collection
- these are non-equivalent
- the most commonly used ones are input-order dependent
- the number of runs r varies significantly
- \Longrightarrow different tools on the same dataset can produce different size data structures
- \Longrightarrow the same tool on the same dataset can produce different size data structures
- optBWT minimizes r, and has been implemented
- definition of r should be standardized (optBWT or colexBWT)

Open Problems

- upper bound on differences between separator-based BWT variants
- characterize string collections for which differences highest
- analyze differences between eBWT and separator-based BWTs

Open Problems

- upper bound on differences between separator-based BWT variants
- characterize string collections for which differences highest
- analyze differences between eBWT and separator-based BWTs

My personal conclusion:
Definitions matter!

Acknowledgements

- Davide Cenzato and Zsuzsanna Lipták: A survey of BWT variants for string collections, arXiv:2202.13235 (conf. version: CPM 2022) github.com/davidecenzato/BWT-variants-for-string-collections
- Davide Cenzato, Veronica Guerrini, Zsuzsanna Lipták, and Giovanna Rosone: Computing the optimal BWT for very large string collections, DCC 2023. github.com/davidecenzato/optimalBWT

Acknowledgements

- Davide Cenzato and Zsuzsanna Lipták: A survey of BWT variants for string collections, arXiv:2202.13235 (conf. version: CPM 2022) github.com/davidecenzato/BWT-variants-for-string-collections
- Davide Cenzato, Veronica Guerrini, Zsuzsanna Lipták, and Giovanna Rosone: Computing the optimal BWT for very large string collections, DCC 2023. github.com/davidecenzato/optimalBWT

Thank you for your attention!

