
On the Burrows-Wheeler Transform
of string collections

Zsuzsanna Lipták

University of Verona (Italy)

Primavera dell’Informatica Teorica
11 Jan. 2024

The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

A (non-efficient) algorithm: List all of rotations of string T , sort them
lexicographically, concatenate last characters: bwt(banana) = nnbaaa

Zsuzsanna Lipták On the BWT of string collections 2 / 46

The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

A (non-efficient) algorithm: List all of rotations of string T , sort them
lexicographically, concatenate last characters: bwt(banana) = nnbaaa

Zsuzsanna Lipták On the BWT of string collections 2 / 46

The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

A (non-efficient) algorithm: List all of rotations of string T , sort them
lexicographically, concatenate last characters: bwt(banana) = nnbaaa

Zsuzsanna Lipták On the BWT of string collections 2 / 46

2022

source: https://awards.acm.org/kanellakis

Zsuzsanna Lipták On the BWT of string collections 3 / 46

https://awards.acm.org/kanellakis

The BWT

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

source: Adjeroh, Bell, Mukerjee (2008)

• introduced by M. Burrows and
D. Wheeler in 1994 as a
lossless text compression algorithm

• P. Ferragina and G. Manzini showed later how to use it for pattern
matching, leading to the FM-index [FOCS, 2000; JACM 2005]

• recent: r -index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

Some properties of the BWT:

• computable in linear time O(n) n = |T |
• reversible in linear time O(n)

• uncompressed: same space as text

• if T repetitive, good for compression (see later)

Zsuzsanna Lipták On the BWT of string collections 4 / 46

The BWT

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

source: Adjeroh, Bell, Mukerjee (2008)

• introduced by M. Burrows and
D. Wheeler in 1994 as a
lossless text compression algorithm

• P. Ferragina and G. Manzini showed later how to use it for pattern
matching, leading to the FM-index [FOCS, 2000; JACM 2005]

• recent: r -index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

Some properties of the BWT:

• computable in linear time O(n) n = |T |
• reversible in linear time O(n)

• uncompressed: same space as text

• if T repetitive, good for compression (see later)

Zsuzsanna Lipták On the BWT of string collections 4 / 46

Zsuzsanna Lipták On the BWT of string collections 5 / 46

From strings to string collections

• Human Genome Project (first draft: 2000, completion: 2003)

• Studying variation:
• 1,000 Genomes Project (human): 2008-2015
• 1001 Genomes (Arabidopsis thaliana)
• 3,000 Rice Genomes Project
• 100,000 Genomes Project (human, completed 2018)

• Population-wide:
• Faroe Genome Project: sequence all 50,000 people
• Sequencing Iceland (325,000 people): > 57,000 sequenced

• Human diversity:
• Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
• Sequencing African genomes (Nature 2020)
• Sequencing indigenous Australian genomes (Nature 2023)

• SARS-CoV-2 viral sequences

Zsuzsanna Lipták On the BWT of string collections 6 / 46

From strings to string collections

• Human Genome Project (first draft: 2000, completion: 2003)
• Studying variation:

• 1,000 Genomes Project (human): 2008-2015
• 1001 Genomes (Arabidopsis thaliana)
• 3,000 Rice Genomes Project
• 100,000 Genomes Project (human, completed 2018)

• Population-wide:
• Faroe Genome Project: sequence all 50,000 people
• Sequencing Iceland (325,000 people): > 57,000 sequenced

• Human diversity:
• Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
• Sequencing African genomes (Nature 2020)
• Sequencing indigenous Australian genomes (Nature 2023)

• SARS-CoV-2 viral sequences

Zsuzsanna Lipták On the BWT of string collections 6 / 46

From strings to string collections

• Human Genome Project (first draft: 2000, completion: 2003)
• Studying variation:

• 1,000 Genomes Project (human): 2008-2015
• 1001 Genomes (Arabidopsis thaliana)
• 3,000 Rice Genomes Project
• 100,000 Genomes Project (human, completed 2018)

• Population-wide:
• Faroe Genome Project: sequence all 50,000 people
• Sequencing Iceland (325,000 people): > 57,000 sequenced

• Human diversity:
• Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
• Sequencing African genomes (Nature 2020)
• Sequencing indigenous Australian genomes (Nature 2023)

• SARS-CoV-2 viral sequences

Zsuzsanna Lipták On the BWT of string collections 6 / 46

From strings to string collections

• Human Genome Project (first draft: 2000, completion: 2003)
• Studying variation:

• 1,000 Genomes Project (human): 2008-2015
• 1001 Genomes (Arabidopsis thaliana)
• 3,000 Rice Genomes Project
• 100,000 Genomes Project (human, completed 2018)

• Population-wide:
• Faroe Genome Project: sequence all 50,000 people
• Sequencing Iceland (325,000 people): > 57,000 sequenced

• Human diversity:
• Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
• Sequencing African genomes (Nature 2020)
• Sequencing indigenous Australian genomes (Nature 2023)

• SARS-CoV-2 viral sequences

Zsuzsanna Lipták On the BWT of string collections 6 / 46

From strings to string collections

• Human Genome Project (first draft: 2000, completion: 2003)
• Studying variation:

• 1,000 Genomes Project (human): 2008-2015
• 1001 Genomes (Arabidopsis thaliana)
• 3,000 Rice Genomes Project
• 100,000 Genomes Project (human, completed 2018)

• Population-wide:
• Faroe Genome Project: sequence all 50,000 people
• Sequencing Iceland (325,000 people): > 57,000 sequenced

• Human diversity:
• Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
• Sequencing African genomes (Nature 2020)
• Sequencing indigenous Australian genomes (Nature 2023)

• SARS-CoV-2 viral sequences

Zsuzsanna Lipták On the BWT of string collections 6 / 46

From strings to string collections

Our data is

• growing rapidly, and

• changing: from individual strings to string collections

• many of these consist of many similar copies of the same string

Zsuzsanna Lipták On the BWT of string collections 7 / 46

Outline of talk

• The Burrows-Wheeler Transform (BWT)

• The extended BWT (eBWT)

• Other variants of the BWT for string collections

• Why does it matter?

• Conclusions

Zsuzsanna Lipták On the BWT of string collections 8 / 46

The Burrows-Wheeler Transform

Zsuzsanna Lipták On the BWT of string collections 9 / 46

The Burrows-Wheeler Transform (BWT)

Recall: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

Zsuzsanna Lipták On the BWT of string collections 10 / 46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

• Obs. 1: F = all characters of T in lex-order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T (cyclically):

T = b
1
a
2
n
3
a
4
n
5
a
6

• Obs. 3: all occurrences of a substring appear in
consecutive rows as prefix

Zsuzsanna Lipták On the BWT of string collections 11 / 46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

• Obs. 1: F = all characters of T in lex-order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T (cyclically):

T = b
1
a
2
n
3
a
4
n
5
a
6

• Obs. 3: all occurrences of a substring appear in
consecutive rows as prefix

Zsuzsanna Lipták On the BWT of string collections 11 / 46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

• Obs. 1: F = all characters of T in lex-order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T (cyclically):

T = b
1
a
2
n
3
a
4
n
5
a
6

• Obs. 3: all occurrences of a substring appear in
consecutive rows as prefix

Zsuzsanna Lipták On the BWT of string collections 11 / 46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

• Obs. 1: F = all characters of T in lex-order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T (cyclically):

T = b
1
a
2
n
3
a
4
n
5
a
6

• Obs. 3: all occurrences of a substring appear in
consecutive rows as prefix

Zsuzsanna Lipták On the BWT of string collections 11 / 46

Why is the BWT useful in text compression?

• Obs. 1: F = characters of T in lexicographic order

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták On the BWT of string collections 12 / 46

Why is the BWT useful in text compression?

• Obs. 1: F = characters of T in lexicographic order

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták On the BWT of string collections 12 / 46

Why is the BWT useful in text compression?

• Obs. 1: F = characters of T in lexicographic order

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták On the BWT of string collections 12 / 46

Why is the BWT useful in text compression?

• Obs. 1: F = characters of T in lexicographic order

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták On the BWT of string collections 12 / 46

Why is the BWT useful in text compression?

• Obs. 1: F = characters of T in lexicographic order

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2

(2 = no. occ’s).

Zsuzsanna Lipták On the BWT of string collections 12 / 46

Why is the BWT useful in text compression?

• Obs. 1: F = characters of T in lexicographic order

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták On the BWT of string collections 12 / 46

Of course, things are a bit more complicated in general:

rotation BWT

. . .
he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
(1998 characters)

many the’s, some he, she, The

Zsuzsanna Lipták On the BWT of string collections 13 / 46

Of course, things are a bit more complicated in general:

rotation BWT

. . .
he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
(1998 characters)

many the’s, some he, she, The

Zsuzsanna Lipták On the BWT of string collections 13 / 46

Of course, things are a bit more complicated in general:

rotation BWT

. . .
he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
(1998 characters)

many the’s, some he, she, The

Zsuzsanna Lipták On the BWT of string collections 13 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Compression with the BWT

• takes advantage of this ’clustering effect’

• Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) = 3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

• compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8c1a11b2

Compression: T 7→ RLE(bwt(T))︸ ︷︷ ︸
storage space: O(r)

Ex.: banana 7→ n2b1a3

• good if r is much smaller than n = |T |
(i.e. if few runs)

• for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Lipták On the BWT of string collections 14 / 46

Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i : where 1 ≤ i ≤ n

output: (wanted) banana. T : i ’th rotation lex.ly

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

T = b
1
a
2
n
3
a
4
n
5
a
6

Recall:

Obs. 1: F = all characters of T in lex-order:

Obs. 2: for all i : Li precedes Fi in T .

Zsuzsanna Lipták On the BWT of string collections 15 / 46

Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i : where 1 ≤ i ≤ n

output: (wanted) banana. T : i ’th rotation lex.ly

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

T = b
1
a
2
n
3
a
4
n
5
a
6

Recall:

Obs. 1: F = all characters of T in lex-order:

Obs. 2: for all i : Li precedes Fi in T .

Zsuzsanna Lipták On the BWT of string collections 15 / 46

Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i : where 1 ≤ i ≤ n

output: (wanted) banana. T : i ’th rotation lex.ly

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

F L
1 abanan

2 anaban

3 ananab

4 banana

5 nabana

6 nanaba

T = b
1
a
2
n
3
a
4
n
5
a
6

Recall:

Obs. 1: F = all characters of T in lex-order:

Obs. 2: for all i : Li precedes Fi in T .

Zsuzsanna Lipták On the BWT of string collections 15 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

L
1 n

2 n

3 b

4 a

5 a

6 a

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a
b a n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n a n

a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n a

n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n

a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a

n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b

a n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

Reversing the BWT

• Obs. 1: F = all characters of T in lex-order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 4

F L
1 a n

2 a n

3 a b

4 b a

5 n a

6 n a

b a n a n a

Zsuzsanna Lipták On the BWT of string collections 16 / 46

The BWT of string collections

• The BWT is good on repetitive strings.

• Our string collections are highly repetitive:
many similar copies of the same string

• But: how do we compute the BWT of a multiset?

Generalization of the BWT to multisets:
the extended BWT (eBWT) (next)

Zsuzsanna Lipták On the BWT of string collections 17 / 46

The BWT of string collections

• The BWT is good on repetitive strings.

• Our string collections are highly repetitive:
many similar copies of the same string

• But: how do we compute the BWT of a multiset?

Generalization of the BWT to multisets:
the extended BWT (eBWT) (next)

Zsuzsanna Lipták On the BWT of string collections 17 / 46

The extended BWT

Zsuzsanna Lipták On the BWT of string collections 18 / 46

The extended BWT

[Mantaci, Restivo, Rosone, Sciortino, TCS, 2007]

Ex. M = {bana, an}. The eBWT is a permutation of the characters of
M: eBWT(M) = nbnaaa.

all rotations (conjugates)

bana

anab

naba

aban

an

na

−→
omega order

all rotations, sorted

aban n

anab b

an n

bana a

naba a

na a

N.B. anab <ω an, since anab · anab · · · <lex an · an · an · an · · ·
Zsuzsanna Lipták On the BWT of string collections 19 / 46

The extended BWT

Def.(omega-order): T <ω S if (a) Tω <lex Sω, or

(b) Tω = Sω, T = Uk ,S = Um and k < m

M = {bana, an} omega-order

aban n

anab b

an n

bana a

naba a

na a

lex-order

aban n

an n

anab b

bana a

na a

naba a

N.B. With the lex-order, the LF-property would not hold!

Zsuzsanna Lipták On the BWT of string collections 20 / 46

The extended BWT

• omega-order instead of lex-order

• same as lex-order if neither string is prefix of the other

• omega-order necessary for the LF-property

• the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, . . .

• However, until recently no linear-time algorithm known.

2021:

• linear-time algorithm [Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021]

• We simplified this algorithm, and

• gave first efficient implementations of the eBWT: tools pfpebwt,cais

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

Zsuzsanna Lipták On the BWT of string collections 21 / 46

The extended BWT

• omega-order instead of lex-order

• same as lex-order if neither string is prefix of the other

• omega-order necessary for the LF-property

• the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, . . .

• However, until recently no linear-time algorithm known.

2021:

• linear-time algorithm [Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021]

• We simplified this algorithm, and

• gave first efficient implementations of the eBWT: tools pfpebwt,cais

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

Zsuzsanna Lipták On the BWT of string collections 21 / 46

Other BWT variants for string
collections

Zsuzsanna Lipták On the BWT of string collections 22 / 46

The BWT of string collections

[Cenzato and L., CPM 2022, Arxiv 2023]

Question: How do dedicated tools compute the BWT of a string
collection? (string collection: multiset of strings)

• We studied 18 publicly available tools.

• Only ours compute the eBWT (pfpebwt,cais).

• We identified 4 more non-equivalent approaches:
the resulting BWTs are all different.

• Often the method is not explicitly stated.

• Underlying assumption: they are all the same.

• But they differ a lot (Hamming distance, number of runs).

• N.B.: all BWT variants are correct (LF-property, . . .)

Zsuzsanna Lipták On the BWT of string collections 23 / 46

The other BWT variants for string collections

The different approaches are:

1. extended BWT of strings with terminator symbol $ (dollarEBWT)

2. concatenate strings, separating them with different dollars
(multidolBWT)

3. first sort colexicographically, then do 2. (colexBWT)

4. concatenate strings, separating them with same dollar (concatBWT)

All use terminator / separator symbols (’dollars’). So we call them
separator-based BWT variants.

Zsuzsanna Lipták On the BWT of string collections 24 / 46

The BWT variants for string collections

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

variant (our result on example tools
terminology)

eBWT CGGGATGTACGTTAAAAA pfpebwt,cais

dollarEBWT GGAAACGG$$$TTACTGTAAA G2BWT, msbwt
multidolBWT GAGAAGCG$$$TTATCTGAAA gsufsort, ropebwt2, eGSA,

Merge-BWT, eGAP, nvSetBWT,
BCR-LCP-GSA, grlBWT,
BEETL, bwt-lcp-parallel

colexBWT AAAGGCGG$$$TTACTGTAAA ropebwt2, BCR-LCP-GSA
concatBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT, r-pfbwt, CMS-BWT

tools for single strings

Zsuzsanna Lipták On the BWT of string collections 25 / 46

The dollar-eBWT

1. dollarEBWT(M) = eBWT({Ti$: Ti ∈M}), $ < c for all char’s c

Now no string is prefix of another =⇒ omega-order same as lex-order.

M = {bana$, an$} dollarEBWT

$an n

$bana a

a$ban n

an$ $
ana$b b

bana$ $
n$a a

na$ba a

nanbaa

eBWT of {bana, an}

aban n

anab b

an n

bana a

naba a

na a

nbnaaa

Zsuzsanna Lipták On the BWT of string collections 26 / 46

The dollar-eBWT

1. dollarEBWT(M) = eBWT({Ti$: Ti ∈M}), $ < c for all char’s c

Now no string is prefix of another =⇒ omega-order same as lex-order.

M = {bana$, an$} dollarEBWT

$an n

$bana a

a$ban n

an$ $
ana$b b

bana$ $
n$a a

na$ba a

nanbaa

eBWT of {bana, an}

aban n

anab b

an n

bana a

naba a

na a

nbnaaa

Zsuzsanna Lipták On the BWT of string collections 26 / 46

The different BWT variants

The other 3 methods concatenate the input strings, and then apply the
classical BWT.

The main issue here is to avoid spurious substrings:

–

Zsuzsanna Lipták On the BWT of string collections 27 / 46

The multidollar BWT

2. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

bwt(ATATG$1TGA$2ACG$3ATCA$4GGA$5) = GAGAAGCG$$$TTATCTGAAA

• most commonly used method

• analogous to Generalized Suffix Tree and Generalized Suffix Array

• dollars are different only conceptually (break ties by index)

• equivalent: concatenate without separators, use bitstring marking
string beginnings

Zsuzsanna Lipták On the BWT of string collections 28 / 46

The multidollar BWT

2. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

bwt(ATATG$1TGA$2ACG$3ATCA$4GGA$5) = GAGAAGCG$$$TTATCTGAAA

• most commonly used method

• analogous to Generalized Suffix Tree and Generalized Suffix Array

• dollars are different only conceptually (break ties by index)

• equivalent: concatenate without separators, use bitstring marking
string beginnings

Zsuzsanna Lipták On the BWT of string collections 28 / 46

The colex BWT

3. colexBWT(M): multidolBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

colex order: ATCA,GGA,TGA,ACG,ATATG

bwt(ATCA$1GGA$2TGA$3ACG$4ATATG$5) = AAAGGCGG$$$TTACTGTAAA

• reduces number of runs (see later)

• implemented as an option in ropebwt2,BCR-LCP-GSA

Zsuzsanna Lipták On the BWT of string collections 29 / 46

The colex BWT

3. colexBWT(M): multidolBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

colex order: ATCA,GGA,TGA,ACG,ATATG

bwt(ATCA$1GGA$2TGA$3ACG$4ATATG$5) = AAAGGCGG$$$TTACTGTAAA

• reduces number of runs (see later)

• implemented as an option in ropebwt2,BCR-LCP-GSA

Zsuzsanna Lipták On the BWT of string collections 29 / 46

The colex BWT

3. colexBWT(M): multidolBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

colex order: ATCA,GGA,TGA,ACG,ATATG

bwt(ATCA$1GGA$2TGA$3ACG$4ATATG$5) = AAAGGCGG$$$TTACTGTAAA

• reduces number of runs (see later)

• implemented as an option in ropebwt2,BCR-LCP-GSA

Zsuzsanna Lipták On the BWT of string collections 29 / 46

The concat BWT

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

bwt(ATATGTGAACG$ATCA$GGA$#) = $AAGAGGGC$#$TTACTGT$AAA$

(for easier comparison, we simplify to AAGAGGGC$$$TTACTGTAAA)

• very easy to implement

• used e.g. in BigBWT,CMS-BWT.

Zsuzsanna Lipták On the BWT of string collections 30 / 46

The concat BWT

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

bwt(ATATGTGAACG$ATCA$GGA$#) = $AAGAGGGC$#$TTACTGT$AAA$

(for easier comparison, we simplify to AAGAGGGC$$$TTACTGTAAA)

• very easy to implement

• used e.g. in BigBWT,CMS-BWT.

Zsuzsanna Lipták On the BWT of string collections 30 / 46

The concat BWT

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

bwt(ATATGTGAACG$ATCA$GGA$#) = $AAGAGGGC$#$TTACTGT$AAA$

(for easier comparison, we simplify to AAGAGGGC$$$TTACTGTAAA)

• very easy to implement

• used e.g. in BigBWT,CMS-BWT.

Zsuzsanna Lipták On the BWT of string collections 30 / 46

The concat BWT

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

bwt(ATATGTGAACG$ATCA$GGA$#) = $AAGAGGGC$#$TTACTGT$AAA$

(for easier comparison, we simplify to AAGAGGGC$$$TTACTGTAAA)

• very easy to implement

• used e.g. in BigBWT,CMS-BWT.

Zsuzsanna Lipták On the BWT of string collections 30 / 46

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA

in color: interesting intervals

Zsuzsanna Lipták On the BWT of string collections 31 / 46

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA

in color: interesting intervals

Zsuzsanna Lipták On the BWT of string collections 31 / 46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i ∈ [b, e] for some
interesting interval [b, e].

Def. U is called a left-maximal shared suffix if there exist two strings
S1,S2 ∈M such that U is a suffix of S1$ and S2$ and is preceded by different
characters in S1 and S2. An interval [b, e] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = A$.

A$ATC C

A$GG G

A$TG G

dollarEBWT

A$2 · · · G

A$4 · · · C

A$5 · · · G

multidolBWT

A$1 · · · C

A$2 · · · G

A$3 · · · G

colexBWT

A$# G

A$A · · · G

A$G · · · C

concatBWT

Zsuzsanna Lipták On the BWT of string collections 32 / 46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i ∈ [b, e] for some
interesting interval [b, e].

Def. U is called a left-maximal shared suffix if there exist two strings
S1,S2 ∈M such that U is a suffix of S1$ and S2$ and is preceded by different
characters in S1 and S2. An interval [b, e] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = A$.

A$ATC C

A$GG G

A$TG G

dollarEBWT

A$2 · · · G

A$4 · · · C

A$5 · · · G

multidolBWT

A$1 · · · C

A$2 · · · G

A$3 · · · G

colexBWT

A$# G

A$A · · · G

A$G · · · C

concatBWT

Zsuzsanna Lipták On the BWT of string collections 32 / 46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i ∈ [b, e] for some
interesting interval [b, e].

Def. U is called a left-maximal shared suffix if there exist two strings
S1,S2 ∈M such that U is a suffix of S1$ and S2$ and is preceded by different
characters in S1 and S2. An interval [b, e] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = A$.

A$ATC C

A$GG G

A$TG G

dollarEBWT

A$2 · · · G

A$4 · · · C

A$5 · · · G

multidolBWT

A$1 · · · C

A$2 · · · G

A$3 · · · G

colexBWT

A$# G

A$A · · · G

A$G · · · C

concatBWT

Zsuzsanna Lipták On the BWT of string collections 32 / 46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i ∈ [b, e] for some
interesting interval [b, e].

Def. U is called a left-maximal shared suffix if there exist two strings
S1,S2 ∈M such that U is a suffix of S1$ and S2$ and is preceded by different
characters in S1 and S2. An interval [b, e] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = A$.

A$ATC C

A$GG G

A$TG G

dollarEBWT

A$2 · · · G

A$4 · · · C

A$5 · · · G

multidolBWT

A$1 · · · C

A$2 · · · G

A$3 · · · G

colexBWT

A$# G

A$A · · · G

A$G · · · C

concatBWT

Zsuzsanna Lipták On the BWT of string collections 32 / 46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i ∈ [b, e] for some
interesting interval [b, e].

Def. U is called a left-maximal shared suffix if there exist two strings
S1,S2 ∈M such that U is a suffix of S1$ and S2$ and is preceded by different
characters in S1 and S2. An interval [b, e] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = A$.

A$ATC C

A$GG G

A$TG G

dollarEBWT

A$2 · · · G

A$4 · · · C

A$5 · · · G

multidolBWT

A$1 · · · C

A$2 · · · G

A$3 · · · G

colexBWT

A$# G

A$A · · · G

A$G · · · C

concatBWT

Zsuzsanna Lipták On the BWT of string collections 32 / 46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i ∈ [b, e] for some
interesting interval [b, e].

Def. U is called a left-maximal shared suffix if there exist two strings
S1,S2 ∈M such that U is a suffix of S1$ and S2$ and is preceded by different
characters in S1 and S2. An interval [b, e] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = A$.

A$ATC C

A$GG G

A$TG G

dollarEBWT

A$2 · · · G

A$4 · · · C

A$5 · · · G

multidolBWT

A$1 · · · C

A$2 · · · G

A$3 · · · G

colexBWT

A$# G

A$A · · · G

A$G · · · C

concatBWT

Zsuzsanna Lipták On the BWT of string collections 32 / 46

Hamming distance between separator-based BWTs

Variability

var(M) =

∑
[b,e] interesting int. var([b, e])∑

[b,e] interesting int.(e − b + 1)
, where var([b, e]) = max no. runs in [b, e]

(depends on Parikh vector)

Zsuzsanna Lipták On the BWT of string collections 33 / 46

Why does it matter?

Zsuzsanna Lipták On the BWT of string collections 34 / 46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’t matter, all I care about is that it’s efficient.

Theoretician: . . . and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it’s not nice that your tool computes a different thing
from your competitor’s.

Programmer: I am never going to use her tool anyway!

Zsuzsanna Lipták On the BWT of string collections 35 / 46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’t matter, all I care about is that it’s efficient.

Theoretician: . . . and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it’s not nice that your tool computes a different thing
from your competitor’s.

Programmer: I am never going to use her tool anyway!

Zsuzsanna Lipták On the BWT of string collections 35 / 46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’t matter, all I care about is that it’s efficient.

Theoretician: . . . and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it’s not nice that your tool computes a different thing
from your competitor’s.

Programmer: I am never going to use her tool anyway!

Zsuzsanna Lipták On the BWT of string collections 35 / 46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’t matter, all I care about is that it’s efficient.

Theoretician: . . . and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it’s not nice that your tool computes a different thing
from your competitor’s.

Programmer: I am never going to use her tool anyway!

Zsuzsanna Lipták On the BWT of string collections 35 / 46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’t matter, all I care about is that it’s efficient.

Theoretician: . . . and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it’s not nice that your tool computes a different thing
from your competitor’s.

Programmer: I am never going to use her tool anyway!

Zsuzsanna Lipták On the BWT of string collections 35 / 46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’t matter, all I care about is that it’s efficient.

Theoretician: . . . and correct?

Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it’s not nice that your tool computes a different thing
from your competitor’s.

Programmer: I am never going to use her tool anyway!

Zsuzsanna Lipták On the BWT of string collections 35 / 46

Why you should care

1. number of runs

2. the parameter r is not well-defined

3. input order dependence

Zsuzsanna Lipták On the BWT of string collections 36 / 46

1. Number of runs

r = number of runs of the BWT.

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example r r w/o $’s

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA 11 11

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA 14 11
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA 17 14
colexBWT(M) AAAGGCGG$$$TTACTGTAAA 14 11
concatBWT(M) AAGAGGGC$$$TTACTGTAAA 15 12

Zsuzsanna Lipták On the BWT of string collections 37 / 46

1. Number of runs

r = number of runs of the BWT.
Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example r r w/o $’s

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA 11 11

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA 14 11
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA 17 14
colexBWT(M) AAAGGCGG$$$TTACTGTAAA 14 11
concatBWT(M) AAGAGGGC$$$TTACTGTAAA 15 12

Zsuzsanna Lipták On the BWT of string collections 37 / 46

1. Number of runs

Average runlength (n/r) on four short sequence datasets, of all BWT variants.

(500,000 sequences each, of length between 50 and 301.)

• On these datasets, difference of a factor of up to 4.2.

• In a separate work, difference of a factor of up to 31.
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 38 / 46

1. Number of runs

Average runlength (n/r) on four short sequence datasets, of all BWT variants.

(500,000 sequences each, of length between 50 and 301.)

• On these datasets, difference of a factor of up to 4.2.

• In a separate work, difference of a factor of up to 31.
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 38 / 46

size of data structures O(r)

So maybe you should care. . .

Zsuzsanna Lipták On the BWT of string collections 39 / 46

2. The parameter r

• size of data structures O(r) (r -index) Gagie et al. [JACM 2020],

Bannai et al. [TCS 2020]

• algorithms’ running time ideally a function of r (not of n = |T |)
• increasingly used as a repetitiveness measure of T , similar to z

(number of Lempel-Ziv phrases)
• as a property of the dataset Bannai et al. [TCS 2020],

Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

• in theoretical work on repetitiveness measures
Kempa and Kociumaka [FOCS 2020],

Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]

Zsuzsanna Lipták On the BWT of string collections 40 / 46

2. The parameter r

• size of data structures O(r) (r -index) Gagie et al. [JACM 2020],

Bannai et al. [TCS 2020]

• algorithms’ running time ideally a function of r (not of n = |T |)

• increasingly used as a repetitiveness measure of T , similar to z
(number of Lempel-Ziv phrases)
• as a property of the dataset Bannai et al. [TCS 2020],

Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

• in theoretical work on repetitiveness measures
Kempa and Kociumaka [FOCS 2020],

Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]

Zsuzsanna Lipták On the BWT of string collections 40 / 46

2. The parameter r

• size of data structures O(r) (r -index) Gagie et al. [JACM 2020],

Bannai et al. [TCS 2020]

• algorithms’ running time ideally a function of r (not of n = |T |)
• increasingly used as a repetitiveness measure of T , similar to z

(number of Lempel-Ziv phrases)
• as a property of the dataset Bannai et al. [TCS 2020],

Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

• in theoretical work on repetitiveness measures
Kempa and Kociumaka [FOCS 2020],

Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]

Zsuzsanna Lipták On the BWT of string collections 40 / 46

2. The parameter r

• size of data structures O(r) (r -index) Gagie et al. [JACM 2020],

Bannai et al. [TCS 2020]

• algorithms’ running time ideally a function of r (not of n = |T |)
• increasingly used as a repetitiveness measure of T , similar to z

(number of Lempel-Ziv phrases)
• as a property of the dataset Bannai et al. [TCS 2020],

Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

• in theoretical work on repetitiveness measures
Kempa and Kociumaka [FOCS 2020],

Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]

Zsuzsanna Lipták On the BWT of string collections 40 / 46

3. Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

3 / 9

Input order dependence

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták 13 / 26

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

mdolBWT(ℳ1) = GAGAAGCG$$$TTATCTGAAA

mdolBWT(ℳ2) = GGAAAGGC$$$TTACTGTAAA

concBWT(ℳ1) = AAGAGGGC$$$TTACTGTAAA

concBWT(ℳ2) = AGAGACGG$$$TTACTTGAAA

Thus, giving the same dataset to the same tool but in different order can
produce very different results! (incl. the number of runs)

Zsuzsanna Lipták On the BWT of string collections 41 / 46

3. Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

3 / 9

Input order dependence

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták 13 / 26

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

mdolBWT(ℳ1) = GAGAAGCG$$$TTATCTGAAA

mdolBWT(ℳ2) = GGAAAGGC$$$TTACTGTAAA

concBWT(ℳ1) = AAGAGGGC$$$TTACTGTAAA

concBWT(ℳ2) = AGAGACGG$$$TTACTTGAAA

Thus, giving the same dataset to the same tool but in different order can
produce very different results! (incl. the number of runs)

Zsuzsanna Lipták On the BWT of string collections 41 / 46

3. Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

3 / 9

Input order dependence

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták 13 / 26

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

mdolBWT(ℳ1) = GAGAAGCG$$$TTATCTGAAA

mdolBWT(ℳ2) = GGAAAGGC$$$TTACTGTAAA

concBWT(ℳ1) = AAGAGGGC$$$TTACTGTAAA

concBWT(ℳ2) = AGAGACGG$$$TTACTTGAAA

Thus, giving the same dataset to the same tool but in different order can
produce very different results! (incl. the number of runs)

Zsuzsanna Lipták On the BWT of string collections 41 / 46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation π such that multidol(π(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

• Prop. =⇒ any separator-based BWT variant can be computed using
the multidollar method

• Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

• We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 42 / 46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation π such that multidol(π(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

• Prop. =⇒ any separator-based BWT variant can be computed using
the multidollar method

• Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

• We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 42 / 46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation π such that multidol(π(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

• Prop. =⇒ any separator-based BWT variant can be computed using
the multidollar method

• Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

• We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 42 / 46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation π such that multidol(π(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

• Prop. =⇒ any separator-based BWT variant can be computed using
the multidollar method

• Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

• We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 42 / 46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation π such that multidol(π(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

• Prop. =⇒ any separator-based BWT variant can be computed using
the multidollar method

• Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

• We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Lipták On the BWT of string collections 42 / 46

Conclusions

Zsuzsanna Lipták On the BWT of string collections 43 / 46

Conclusions

• there are different ways of computing the BWT of a string collection

• these are non-equivalent

• the most commonly used ones are input-order dependent

• the number of runs r varies significantly

• =⇒ different tools on the same dataset can produce different size
data structures

• =⇒ the same tool on the same dataset can produce different size
data structures

• optBWT minimizes r , and has been implemented

• definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Lipták On the BWT of string collections 44 / 46

Conclusions

• there are different ways of computing the BWT of a string collection

• these are non-equivalent

• the most commonly used ones are input-order dependent

• the number of runs r varies significantly

• =⇒ different tools on the same dataset can produce different size
data structures

• =⇒ the same tool on the same dataset can produce different size
data structures

• optBWT minimizes r , and has been implemented

• definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Lipták On the BWT of string collections 44 / 46

Conclusions

• there are different ways of computing the BWT of a string collection

• these are non-equivalent

• the most commonly used ones are input-order dependent

• the number of runs r varies significantly

• =⇒ different tools on the same dataset can produce different size
data structures

• =⇒ the same tool on the same dataset can produce different size
data structures

• optBWT minimizes r , and has been implemented

• definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Lipták On the BWT of string collections 44 / 46

Conclusions

• there are different ways of computing the BWT of a string collection

• these are non-equivalent

• the most commonly used ones are input-order dependent

• the number of runs r varies significantly

• =⇒ different tools on the same dataset can produce different size
data structures

• =⇒ the same tool on the same dataset can produce different size
data structures

• optBWT minimizes r , and has been implemented

• definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Lipták On the BWT of string collections 44 / 46

Conclusions

• there are different ways of computing the BWT of a string collection

• these are non-equivalent

• the most commonly used ones are input-order dependent

• the number of runs r varies significantly

• =⇒ different tools on the same dataset can produce different size
data structures

• =⇒ the same tool on the same dataset can produce different size
data structures

• optBWT minimizes r , and has been implemented

• definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Lipták On the BWT of string collections 44 / 46

Open Problems

• upper bound on differences between separator-based BWT variants

• characterize string collections for which differences highest

• analyze differences between eBWT and separator-based BWTs

My personal conclusion:

Definitions matter!

Zsuzsanna Lipták On the BWT of string collections 45 / 46

Open Problems

• upper bound on differences between separator-based BWT variants

• characterize string collections for which differences highest

• analyze differences between eBWT and separator-based BWTs

My personal conclusion:

Definitions matter!

Zsuzsanna Lipták On the BWT of string collections 45 / 46

Acknowledgements

• Davide Cenzato and Zsuzsanna Lipták: A survey of BWT variants for string
collections, arXiv:2202.13235 (conf. version: CPM 2022)
github.com/davidecenzato/BWT-variants-for-string-collections

• Davide Cenzato, Veronica Guerrini, Zsuzsanna Lipták, and Giovanna Rosone:
Computing the optimal BWT for very large string collections, DCC 2023.
github.com/davidecenzato/optimalBWT

Thank you for your attention!

Zsuzsanna Lipták On the BWT of string collections 46 / 46

github.com/davidecenzato/BWT-variants-for-string-collections
github.com/davidecenzato/optimalBWT

Acknowledgements

• Davide Cenzato and Zsuzsanna Lipták: A survey of BWT variants for string
collections, arXiv:2202.13235 (conf. version: CPM 2022)
github.com/davidecenzato/BWT-variants-for-string-collections

• Davide Cenzato, Veronica Guerrini, Zsuzsanna Lipták, and Giovanna Rosone:
Computing the optimal BWT for very large string collections, DCC 2023.
github.com/davidecenzato/optimalBWT

Thank you for your attention!

Zsuzsanna Lipták On the BWT of string collections 46 / 46

github.com/davidecenzato/BWT-variants-for-string-collections
github.com/davidecenzato/optimalBWT

