
On the combinatorics
of the BWT of string collections

Zsuzsanna Lipták

University of Verona (Italy)

Sequences in London
Goldsmiths, University of London

11 May 2023

The Burrows-Wheeler-Transform

Ex.: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

Take a string T , list all of its rotations, sort them lexicographically,
concatenate last characters: bwt(banana) = nnbaaa

Zsuzsanna Lipták Combinatorics of the BWT of string collections 2 / 39

source: https://awards.acm.org/kanellakis

Zsuzsanna Lipták Combinatorics of the BWT of string collections 3 / 39

https://awards.acm.org/kanellakis

BWT history

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

• invented by David Wheeler in the 70s
as a lossless text compression algorithm

• fully developed and written up together with Michael Burrows in 1994

• appeared as a technical report only, never published

• popularized by Julian Seward’s implementation: bzip and bzip2

(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Lipták Combinatorics of the BWT of string collections 4 / 39

Why is the BWT useful in text compression?

rotation BWT

he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
• many the’s, some he, she, The

Zsuzsanna Lipták Combinatorics of the BWT of string collections 5 / 39

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding

• nowadays: using RLE (runlength-encoding)
• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Combinatorics of the BWT of string collections 6 / 39

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Combinatorics of the BWT of string collections 6 / 39

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Combinatorics of the BWT of string collections 6 / 39

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Combinatorics of the BWT of string collections 6 / 39

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Combinatorics of the BWT of string collections 6 / 39

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding)

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small

Zsuzsanna Lipták Combinatorics of the BWT of string collections 6 / 39

The parameter r

Def. String T , r = number of runs of bwt(T).

• size of data structures O(r)

• algorithms’ running time ideally a function of r (not of n = |T |)
• increasingly used as a repetitiveness measure of T

•Navarro: “Indexing Highly Repetitive String Collections,
Part I: Repetitiveness Measures” [ACM Comp. Surv., 2021]
•Kempa and Kociumaka: ”Resolution of the Burrows-Wheeler Transform

Conjecture” [FOCS 2020]

• r (or n/r , the average runlength) is treated as a property of the
dataset

• We will argue that for string collections, the parameter r is not
well-defined

Zsuzsanna Lipták Combinatorics of the BWT of string collections 7 / 39

The BWT of string collections

Zsuzsanna Lipták Combinatorics of the BWT of string collections 8 / 39

The BWT of string collections

[Cenzato and L., CPM 2022]

Question: How to compute the BWT of a multiset?
ex. M = {ATATG, TGA, ACG, ATCA, GGA}

• Three fundamentally different approaches (with variations)

• These result in different transforms.

• The idea seems to be that it’s all the same: not true!

The three appraoches are:

1. extended BWT of Mantaci et al.

2. concatenate strings, separating them with different dollars

3. concatenate strings, separating them with same dollar

Zsuzsanna Lipták Combinatorics of the BWT of string collections 9 / 39

The BWT of string collections

[Cenzato and L., CPM 2022]

Question: How to compute the BWT of a multiset?
ex. M = {ATATG, TGA, ACG, ATCA, GGA}

• Three fundamentally different approaches (with variations)

• These result in different transforms.

• The idea seems to be that it’s all the same: not true!

The three appraoches are:

1. extended BWT of Mantaci et al.

2. concatenate strings, separating them with different dollars

3. concatenate strings, separating them with same dollar

Zsuzsanna Lipták Combinatorics of the BWT of string collections 9 / 39

How to compute the BWT of a multiset of strings?

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

variant (our result on example tools
terminology)

eBWT CGGGATGTACGTTAAAAA pfpebwt

dollarEBWT GGAAACGG$$$TTACTGTAAA G2BWT, pfpebwt, msbwt
multidolBWT GAGAAGCG$$$TTATCTGAAA BCR, ropebwt2, nvSetBWT,

Merge-BWT, eGSA, eGAP,
bwt-lcp-parallel, gsufsort

concatBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT, tools for single strings
colexBWT AAAGGCGG$$$TTACTGTAAA ropebwt2

Zsuzsanna Lipták Combinatorics of the BWT of string collections 10 / 39

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

• No efficient implementation until 2021
[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

• a variation: dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
[Diaz-Domingo and Navarro, DCC 2021, CPM 2022]

Zsuzsanna Lipták Combinatorics of the BWT of string collections 11 / 39

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

• No efficient implementation until 2021
[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

• a variation: dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
[Diaz-Domingo and Navarro, DCC 2021, CPM 2022]

Zsuzsanna Lipták Combinatorics of the BWT of string collections 11 / 39

The different BWT variants

1. eBWT(M): the extended BWT of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

• No efficient implementation until 2021
[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

• a variation: dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
[Diaz-Domingo and Navarro, DCC 2021, CPM 2022]

Zsuzsanna Lipták Combinatorics of the BWT of string collections 11 / 39

The different BWT variants

2. multidollarBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are

smaller than characters from Σ, and $1 < $2 < . . . < $k

• this is the most commonly used method

• dollars are different only conceptually (break ties by index)

• analogous to Generalized Suffix Tree and Generalized Suffix Array

• equivalent: concatenate without separators, use bitstring marking
string beginnings

• a special case:
colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Combinatorics of the BWT of string collections 12 / 39

The different BWT variants

2. multidollarBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are

smaller than characters from Σ, and $1 < $2 < . . . < $k

• this is the most commonly used method

• dollars are different only conceptually (break ties by index)

• analogous to Generalized Suffix Tree and Generalized Suffix Array

• equivalent: concatenate without separators, use bitstring marking
string beginnings

• a special case:
colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Combinatorics of the BWT of string collections 12 / 39

The different BWT variants

3. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

used e.g. in BigBWT. More later.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 13 / 39

The different BWT variants

3. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

used e.g. in BigBWT. More later.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 13 / 39

Interesting intervals

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA

in color: interesting intervals

Zsuzsanna Lipták Combinatorics of the BWT of string collections 14 / 39

Interesting intervals

An interval [i , j] is interesting if it is the SA-interval of a left-maximal shared
suffix U. Then and only then can two separator-based BWTs differ in [i , j].

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

3 / 9

Interesting intervals

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták

[𝑏. . 𝑒]
𝑈

$2
$4
$5
𝑈 = A$

12 / 26

$1
$2
$3

𝑈 = A$𝑈 = A$

Zsuzsanna Lipták Combinatorics of the BWT of string collections 15 / 39

Order of shared suffixes

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example order of shared suffixes

eBWT(M) the extended BWT omega-order of strings
CGGGATGTACGTTAAAAA (mixed in with substrings)

dollarEBWT(M) eBWT({Ti$: Ti ∈M} lexicographic order of strings
GGAAACGG$$$TTACTGTAAA

multidolBWT(M) bwt(T1$1T2$2 · · ·Tk$k) input order of strings
GAGAAGCG$$$TTATCTGAAA

concatBWT(M) bwt(T1$T2$ · · ·Tk$#) lexicographic order of
AAGAGGGC$$$TTACTGTAAA subsequent strings in input

colexBWT(M) multidol(M, γ), γ = colex colexicographic order
AAAGGCGG$$$TTACTGTAAA

Zsuzsanna Lipták Combinatorics of the BWT of string collections 16 / 39

Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

3 / 9

Input order dependence

A theoretical and experimental analysis of BWT variants for string collectionsDavide Cenzato and Zsuzsanna Lipták 13 / 26

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

ℳ1 = [ATATG,TGA,ACG,ATCA,GGA]

ℳ2 = [ACG,ATATG,GGA,TGA,ATCA]

mdolBWT(ℳ1) = GAGAAGCG$$$TTATCTGAAA

mdolBWT(ℳ2) = GGAAAGGC$$$TTACTGTAAA

concBWT(ℳ1) = AAGAGGGC$$$TTACTGTAAA

concBWT(ℳ2) = AGAGACGG$$$TTACTTGAAA

Zsuzsanna Lipták Combinatorics of the BWT of string collections 17 / 39

The parameter r
Results regarding r on four short sequence datasets, of all BWT variants.

Left: average runlength (n/r). Right: number of runs r (percentage increase with

respect to the optimal BWT of [Bentley et al., ESA 2020]).

(In each experiment: 500,000 seq.s of length between 50 and 301.)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 18 / 39

The different BWT variants

• BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

• we theoretically explained these differences (”interesting intervals”)

• differences especially high on large sets of short sequences

• multidolBWT and concatBWT depend on the input order

• differences extend to parameter r (number of runs of the BWT)

We suggest

• to standardize the definition of r (colexBWT or optBWT)

• optBWT now implemented: Cenzato, Guerrini, L., Rosone, DCC 2023
(next)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 19 / 39

The different BWT variants

• BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

• we theoretically explained these differences (”interesting intervals”)

• differences especially high on large sets of short sequences

• multidolBWT and concatBWT depend on the input order

• differences extend to parameter r (number of runs of the BWT)

We suggest

• to standardize the definition of r (colexBWT or optBWT)

• optBWT now implemented: Cenzato, Guerrini, L., Rosone, DCC 2023
(next)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 19 / 39

The optimal BWT

Zsuzsanna Lipták Combinatorics of the BWT of string collections 20 / 39

Minimizing the number of runs of the multidollarBWT

[Cenzato, Guerrini, L., Rosone, DCC 2023]

• Bentley et al. [ESA 2020] presented an linear-time algorithm for
computing the input order which minimizes r

• We implemented this algorithm, combining it with two BWT
construction algorithms (SAIS and BCR)

• negligible computational overhead w.r.t. BWT of input order

• up to a factor of 31 reduction of r on real data

Zsuzsanna Lipták Combinatorics of the BWT of string collections 21 / 39

optBWT: simulated data

number of runs on simulated datasets of P. Aeruginosa (cov. 450x), for varying

read lengths. Left: number of runs. Right: percentage increase of the two

heuristics sapBWT and colexBWT with respect to the optimal BWT.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 22 / 39

optBWT: real data

data number of runs increase compared to optimal BWT (factor and perc.) resource usage (optBWT)
set inputBWT colexBWT (rlo) sapBWT lexBWT RAM (GB) Time (hh:mm:ss)

1 4.22 (322.26%) 1.03 (3.48%) 1.53 (53.06%) 1.30 (30.13%) 6.45 (1.02×) 7:18 (1.12×)

2 14.07 (1306.95%) 1.15 (14.54%) 1.21 (20.75%) 3.52 (252.39%) 8.08 (1.03×) 6:32 (1.15×)

3 3.65 (264.90%) 1.07 (6.52%) 1.30 (29.63%) 2.07 (107.01%) 11.15 (1.04×) 18:29 (1.26×)

4 5.17 (416.52%) 1.04 (4.38%) 1.55 (55.33%) 1.55 (54.87%) 21.03 (1.02×) 22:08 (1.08×)

5 2.44 (144.36%) 1.05 (5.05%) 1.16 (15.73%) 2.03 (103.35%) 4.31 (1.04×) 2:25:46 (1.28×)

6 31.49 (3048.66%) 1.04 (4.30%) 1.79 (79.40%) 1.89 (89.17%) 8.86 (1.05×) 1:59:46 (1.39×)

7 2.13 (112.56%) 1.04 (4.17%) 1.12 (11.89%) 1.96 (96.04%) 34.42 (1.03×) 26:24:18 (1.48×)

Increase in the number of runs compared to the optBWT (left), and resource

usage (right). For each BWT, increase factor and the percentage increase (in

brackets). Total time and memory for building the optBWT from scratch, and

overhead with respect to constructing the inputBWT only (in brackets).

dataset 2: SARS-CoV-2 reads (33 mio. sequences of length 50);

dataset 6: Sindibis virus reads (431 mio. sequences of length 36).

Zsuzsanna Lipták Combinatorics of the BWT of string collections 23 / 39

What is concatBWT?

Zsuzsanna Lipták Combinatorics of the BWT of string collections 24 / 39

Order matters!

M = {ATATG, TGA, ACG, ATCA, GGA} M = [ATATG, TGA, ACG, ATCA, GGA]

BWT variant example order of shared suffixes

eBWT(M) the extended BWT omega-order of strings
CGGGATGTACGTTAAAAA (mixed in with substrings)

dollarEBWT(M) eBWT({Ti$: Ti ∈M} lexicographic order of strings
GGAAACGG$$$TTACTGTAAA

multidolBWT(M) bwt(T1$1T2$2 · · ·Tk$k) input order of strings
GAGAAGCG$$$TTATCTGAAA

concatBWT(M) bwt(T1$T2$ · · ·Tk$#) lexicographic order of
AAGAGGGC$$$TTACTGTAAA subsequent strings in input

colexBWT(M) multidol(M, γ), γ = colex colexicographic order
AAAGGCGG$$$TTACTGTAAA

In the k-prefix (shared suffix: $) of the BWT we see the output order.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 25 / 39

What is the output order of the concatBWT?
[Cenzato, L., Masillo, Rossi, forthcoming]

M = [ATATG, TGA, ACG, ATCA, GGA] 7→ ATATGTGAACG$ATCA$GGA$#

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

Map strings to their lexicographic rank:

ACG 7→ a

ATATG 7→ b

ATCA 7→ c

GGA 7→ d

TGA 7→ e

M = ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 26 / 39

What is the output order of the concatBWT?

M = ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

index concatBWT rotation
23 A $#ATATG$TGAACGATCA$GGA
10 A ACGATCAGGA#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A GGA#ATATGTGAACG$ATCA

6 G TGAACG$ATCA$GGA$#ATATG
.

input: b e a c d # output: d e a c b

Zsuzsanna Lipták Combinatorics of the BWT of string collections 27 / 39

What is the output order of the concatBWT?

input: b e a c d # output: d e a c b

This is the BWT of the metacharacter-string! (almost)

BWT(beacd#) = de#acb deacb

output = BWT(input#) (remove the # from the output)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 28 / 39

What is the output order of the concatBWT?

input: b e a c d # output: d e a c b

This is the BWT of the metacharacter-string! (almost)

BWT(beacd#) = de#acb deacb

output = BWT(input#) (remove the # from the output)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 28 / 39

What is the output order of the concatBWT?

• the (output order of the) concatBWT is the BWT of the meta-string
of the input

• for many datasets, the concatBWT and the multidollarBWT will differ

• the concatBWT cannot produce all BWT variants

• only those for which there exists a position into which the # can be
inserted s.t. it becomes the BWT of some meta-string

• which are these? next

Zsuzsanna Lipták Combinatorics of the BWT of string collections 29 / 39

When a dollar makes a BWT

Zsuzsanna Lipták Combinatorics of the BWT of string collections 30 / 39

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

Question: Given a word W , can we insert $ somewhere to make it a
BWT?

Ex.: W = annbaa.

0 $annbaa -
1 a$nnbaa -
2 an$nbaa -
3 ann$baa -
4 annb$aa bwt(banana$)
5 annba$a -
6 annbaa$ bwt(nabana$)

annbaa: yes X

Ex.: W = banana.

0 $banana -
1 b$anana -
2 ba$nana -
3 ban$ana -
4 bana$na -
5 banan$a -
6 banana$ -

banana: no 7

Zsuzsanna Lipták Combinatorics of the BWT of string collections 31 / 39

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

Question: Given a word W , can we insert $ somewhere to make it a
BWT?

Ex.: W = annbaa.

0 $annbaa -
1 a$nnbaa -
2 an$nbaa -
3 ann$baa -
4 annb$aa bwt(banana$)
5 annba$a -
6 annbaa$ bwt(nabana$)

annbaa: yes X

Ex.: W = banana.

0 $banana -
1 b$anana -
2 ba$nana -
3 ban$ana -
4 bana$na -
5 banan$a -
6 banana$ -

banana: no 7

Zsuzsanna Lipták Combinatorics of the BWT of string collections 31 / 39

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

Question: Given a word W , can we insert $ somewhere to make it a
BWT?

Ex.: W = annbaa.

0 $annbaa -
1 a$nnbaa -
2 an$nbaa -
3 ann$baa -
4 annb$aa bwt(banana$)
5 annba$a -
6 annbaa$ bwt(nabana$)

annbaa: yes X

Ex.: W = banana.

0 $banana -
1 b$anana -
2 ba$nana -
3 ban$ana -
4 bana$na -
5 banan$a -
6 banana$ -

banana: no 7

Zsuzsanna Lipták Combinatorics of the BWT of string collections 31 / 39

Our algorithm

• Simple algorithm: for every i , 0 ≤ i < n, try reversing the BWT:
O(n2) time

• Our algorithm: O(n log n) time

• def.: πi standard permutation of W with $ in position i

• idea: compute πi+1 directly from πi in O(log n) time

• smart use of splay trees for maintaining permutations

Zsuzsanna Lipták Combinatorics of the BWT of string collections 32 / 39

Our algorithm

Lemma: We can get πi+1 from πi with one transposition:

πi+1 = (πi (i), πi (i + 1)) ◦ πi =
$ is in position i

(0, πi (i + 1)) ◦ πi

Lemma

1. Transposition of elements in distinct cycles merges the two cycles

2. Transposition of elements in the same cycle splits the cycle

Zsuzsanna Lipták Combinatorics of the BWT of string collections 33 / 39

Our algorithm

1. Transposition of elements in distinct cycles merges the two cycles(
0 1 2 3 4 5 6
0 5 6 4 1 2 3

)
= (0)(1, 5, 2, 6, 3, 4)(

0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)

2. Transposition of elements in the same cycle splits the cycle(
0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)(

0 1 2 3 4 5 6
5 6 0 4 1 2 3

)
= (0, 5, 2)(6, 3, 4, 1)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 34 / 39

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 35 / 39

Conclusions

• there are different ways of computing the BWT of a string collection

• these are non-equivalent

• several are input-order dependent (in part. multidollarBWT and
concatBWT)

• the number of runs r varies significantly

• for the multidollarBWT, optBWT minimzes r , and has been
implemented

• the concatBWT is more restrictive (”bwt of input order”)

• definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 36 / 39

Papers

• D. Cenzato and Zs. Lipták: A theoretical and experimental analysis of BWT
variants for string collections, CPM 2022.
github.com/davidecenzato/BWT-variants-for-string-collections

• D. Cenzato, V. Guerrini, Zs. Lipták, and G. Rosone: Computing the optimal
BWT for very large string collections, DCC 2023.
github.com/davidecenzato/optimalBWT

• S. Giuliani, Zs. Lipták, F. Masillo, R. Rizzi: When a dollar makes a BWT,
Theor. Comput. Sc., 2021.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 37 / 39

github.com/davidecenzato/BWT-variants-for-string-collections
github.com/davidecenzato/optimalBWT

Acknowledgements (co-authors of this work)

Davide Cenzato

(Univ. of Venice)

Sara Giuliani

(Univ. of Verona)

Veronica Guerrini

(Univ. of Pisa)

Francesco Masillo

(Univ. of Verona)

Romeo Rizzi

(Univ. of Verona)

Giovanna Rosone

(Univ. of Pisa)

Massimiliano Rossi

(Univ. of Florida)

Zsuzsanna Lipták Combinatorics of the BWT of string collections 38 / 39

Thank you for your attention!

email: zsuzsanna.liptak@univr.it

Zsuzsanna Lipták Combinatorics of the BWT of string collections 39 / 39

