
BWT everywhere

Zsuzsanna Lipták

University of Verona (Italy)

CPM 2024
Fukuoka, June 26, 2024

The BWT

(Here BWT stands for: Best Water Technology)

Zsuzsanna Lipták BWT everywhere 2 / 52

The BWT

(Here BWT stands for: Best Water Technology)

Zsuzsanna Lipták BWT everywhere 2 / 52

The BWT

(Here BWT stands for: Best Water Technology)

Zsuzsanna Lipták BWT everywhere 2 / 52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T : bwt(T) = kaouufk

all rotations (conjugates)

fukuoka

ukuokaf

kuokafu

uokafuk

okafuku

kafukuo

afukuok

−→
lexicographic

order

all rotations, sorted

L
afukuok

fukuoka

kafukuo

kuokafu

okafuku

ukuokaf

uokafuk

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták BWT everywhere 3 / 52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T : bwt(T) = kaouufk

all rotations (conjugates)

fukuoka

ukuokaf

kuokafu

uokafuk

okafuku

kafukuo

afukuok

−→
lexicographic

order

all rotations, sorted

L
afukuok

fukuoka

kafukuo

kuokafu

okafuku

ukuokaf

uokafuk

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták BWT everywhere 3 / 52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T : bwt(T) = kaouufk

all rotations (conjugates)

fukuoka

ukuokaf

kuokafu

uokafuk

okafuku

kafukuo

afukuok

−→
lexicographic

order

all rotations, sorted

L
afukuok

fukuoka

kafukuo

kuokafu

okafuku

ukuokaf

uokafuk

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták BWT everywhere 3 / 52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T : bwt(T) = kaouufk

all rotations (conjugates)

fukuoka

ukuokaf

kuokafu

uokafuk

okafuku

kafukuo

afukuok

−→
lexicographic

order

all rotations, sorted

L
afukuok

fukuoka

kafukuo

kuokafu

okafuku

ukuokaf

uokafuk

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták BWT everywhere 3 / 52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T : bwt(T) = kaouufk

all rotations (conjugates)

fukuoka

ukuokaf

kuokafu

uokafuk

okafuku

kafukuo

afukuok

−→
lexicographic

order

all rotations, sorted

L
afukuok

fukuoka

kafukuo

kuokafu

okafuku

ukuokaf

uokafuk

BWT(T) = concatenation of last characters = L

Zsuzsanna Lipták BWT everywhere 3 / 52

The Burrows-Wheeler Transform

• introduced by Burrows and
Wheeler in 1994

• a reversible string transform

• basis of a highly effective lossless
text compression algorithm

• basis of compressed data structures
(compressed text indexes)

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

source: Adjeroh, Bell, Mukerjee (2008)

Zsuzsanna Lipták BWT everywhere 4 / 52

• 2022 ACM Kanellakis Theory and
Practice Award

• for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

• “. . . that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology”

• some bioinformatics tools:

• bwa, bwa-sw, bwa-mem

(Li & Durbin, 2009, 2010, Li 2013)
> 55,000 cit.

• bowtie, bowtie2

(Langmead et al., 2009, 2012)
> 70,000 cit.

Zsuzsanna Lipták BWT everywhere 5 / 52

• 2022 ACM Kanellakis Theory and
Practice Award

• for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

• “. . . that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology”

• some bioinformatics tools:

• bwa, bwa-sw, bwa-mem

(Li & Durbin, 2009, 2010, Li 2013)
> 55,000 cit.

• bowtie, bowtie2

(Langmead et al., 2009, 2012)
> 70,000 cit.

Zsuzsanna Lipták BWT everywhere 5 / 52

• 2022 ACM Kanellakis Theory and
Practice Award

• for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

• “. . . that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology”

• some bioinformatics tools:

• bwa, bwa-sw, bwa-mem

(Li & Durbin, 2009, 2010, Li 2013)
> 55,000 cit.

• bowtie, bowtie2

(Langmead et al., 2009, 2012)
> 70,000 cit.

Zsuzsanna Lipták BWT everywhere 5 / 52

This talk is about other uses of the BWT.

1. distance measures based on the BWT

2. generating random de Bruijn sequences with the BWT

3. analyzing different BWT variants for string collections

4. why a common method for BWT of text collections is not a good idea

Zsuzsanna Lipták BWT everywhere 6 / 52

This talk is about other uses of the BWT.

1. distance measures based on the BWT

2. generating random de Bruijn sequences with the BWT

3. analyzing different BWT variants for string collections

4. why a common method for BWT of text collections is not a good idea

Zsuzsanna Lipták BWT everywhere 6 / 52

Our tools for this talk

Zsuzsanna Lipták BWT everywhere 7 / 52

Tool 1: U-intervals

Def. Let U be a substring of T . The U-interval of L = bwt(T) is [i , j], where the

conjugates in positions k ∈ [i , j] are exactly those starting with U:

N.B.: L[i ..j] = left-context of U; [i , j] ∼= SA-interval of U (here: CA)

Zsuzsanna Lipták BWT everywhere 8 / 52

Tool 1: U-intervals

Def. Let U be a substring of T . The U-interval of L = bwt(T) is [i , j], where the

conjugates in positions k ∈ [i , j] are exactly those starting with U:

N.B.: L[i ..j] = left-context of U; [i , j] ∼= SA-interval of U (here: CA)

Zsuzsanna Lipták BWT everywhere 8 / 52

Why is the BWT so good in compression?

• T has many repeated substrings ⇒ many U-intervals mostly same character

• L = bwt(T) has few runs ⇒ runlength encoding (RLE) is good

bbbaccccccccccccccccccaaaaa 7→ b3a1c18a5

Zsuzsanna Lipták BWT everywhere 9 / 52

Why is the BWT so good in compression?

• T has many repeated substrings ⇒ many U-intervals mostly same character

• L = bwt(T) has few runs ⇒ runlength encoding (RLE) is good

bbbaccccccccccccccccccaaaaa 7→ b3a1c18a5

Zsuzsanna Lipták BWT everywhere 9 / 52

Why is the BWT so good in compression?

• T has many repeated substrings ⇒ many U-intervals mostly same character

• L = bwt(T) has few runs ⇒ runlength encoding (RLE) is good

bbbaccccccccccccccccccaaaaa 7→ b3a1c18a5

Zsuzsanna Lipták BWT everywhere 9 / 52

Tool 2: The extended BWT

(Mantaci, Restivo, Rosone, Sciortino, TCS, 2007)

Ex. M = {fu, k, uoka}. The eBWT is a permutation of the characters of
M: eBWT(M) = kuokufa.

all rotations (conjugates)

fu

uf

k

uoka

okau

kauo

auok

−→
omega order

all rotations, sorted

auok k

fu u

kauo o

k k

okau u

uf f

uoka a

N.B. kauo <ω k: kauo · kauo · · · <lex k · k · k · k · · ·
Zsuzsanna Lipták BWT everywhere 10 / 52

The extended BWT (cont.)

Def. (omega-order): T <ω S if (a) Tω <lex Sω, or

(b) Tω = Sω, T = Uk ,S = Um and k < m

M = {fu, k, uoka} lex-order

auok k

fu u

k k

kauo o

okau u

uf f

uoka a

omega-order

auok k

fu u

kauo o

k k

okau u

uf f

uoka a

(N.B. With the lex-order, the LF-property would not hold.)

Zsuzsanna Lipták BWT everywhere 11 / 52

The extended BWT (cont.)

• omega-order instead of lex-order

• the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, . . .

• However, until recently no linear-time algorithm was known.

Since 2021: linear-time algorithms and implementations available

• First linear-time algorithm
(Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021)

• We significantly simplified this algorithm
(Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021)

• . . . and gave efficient implementations of the eBWT (cais,pfpebwt 2021)

• Later we gave an r -index based on the eBWT (—, Inf. & Comp., 2024)

Zsuzsanna Lipták BWT everywhere 12 / 52

The extended BWT (cont.)

• omega-order instead of lex-order

• the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, . . .

• However, until recently no linear-time algorithm was known.

Since 2021: linear-time algorithms and implementations available

• First linear-time algorithm
(Bannai, Kärkkäinen, Köppl, Piatkowski, CPM 2021)

• We significantly simplified this algorithm
(Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021)

• . . . and gave efficient implementations of the eBWT (cais,pfpebwt 2021)

• Later we gave an r -index based on the eBWT (—, Inf. & Comp., 2024)

Zsuzsanna Lipták BWT everywhere 12 / 52

Tool 3: The standard permutation

Def. Given a string V , its standard permutation πV is defined by:
πV (i) < πV (j) if (i) Vi < Vj , or (ii) Vi = Vj and i < j .

In other words, πV is a stable sort of the characters of V .

Example: V = kaouufk

0 1 2 3 4 5 6

k a o u u f k

a f k k o u u

0 1 2 3 4 5 6

πV = (0 1 2 3 4 5 6
2 0 4 5 6 1 3)

= (0, 2, 4, 6, 3, 5, 1)

(If V is a BWT, then πV is called LF-mapping.)

Zsuzsanna Lipták BWT everywhere 13 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1)

afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3)

auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

The standard permutation (cont.)

• If V is a BWT, then πV is called LF-mapping.

• With πV we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, πV = (0, 2, 4, 6, 3, 5, 1) afukuok

(or given pos. 1: fukuoka)

• Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, πV = (0, 2, 4, 6)(1, 5)(3) auok, fu, k

(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if πV is cyclic.

Zsuzsanna Lipták BWT everywhere 14 / 52

Distance / similarity measures

Mantaci, Restivo, Rosone, Sciortino, ToCS 2007

Zsuzsanna Lipták BWT everywhere 15 / 52

Distance/similarity based on eBWT

Idea: Conjugates of similar strings should mix well in the eBWT.

Ex.: S = kyoto,T = tokyo.

conjugates L DA (document array)

kyoto o S
kyoto o T
okyot t S
okyot t T
otoky y S
otoky y T
tokyo o S
tokyo o T
yotok k S
yotok k T

runlengths of DA: i0, i1, . . . , i`

Def. (delta-distance)
δ(S ,T) =

∑`
j=0(ij − 1)

δ(tokyo, kyoto) = 0

Zsuzsanna Lipták BWT everywhere 16 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Def. (delta-distance)
δ(S ,T) =

∑`
j=0(ij − 1)

DA = T 1S1T 1S1T 3S2T 2S2

δ(S ,T) = 2 + 1 + 1 + 1 = 5

• δ has been used in bioinformatics,
malware analysis, artwork
comparison, . . .

• a modification called ’BW similarity
distribution’ uses the expectation
of the ij and the Shannon-entropy
(Yang et al. 2010, Yang et al. 2010,

Louza et al. 2019)

Zsuzsanna Lipták BWT everywhere 17 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Def. (delta-distance)
δ(S ,T) =

∑`
j=0(ij − 1)

DA = T 1S1T 1S1T 3S2T 2S2

δ(S ,T) = 2 + 1 + 1 + 1 = 5

• δ has been used in bioinformatics,
malware analysis, artwork
comparison, . . .

• a modification called ’BW similarity
distribution’ uses the expectation
of the ij and the Shannon-entropy
(Yang et al. 2010, Yang et al. 2010,

Louza et al. 2019)

Zsuzsanna Lipták BWT everywhere 17 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Let P1 · P2 · · ·Pm a parsing P of DA.

Def. distP(S ,T) =
∑m

i=1 ||Pi |S −|Pi |T |
where |Pi |x is the multiplicity of x in Pi

Ex. Let P be the parsing

DA = (TS)(TS)(T)(T)(TS)(S)(T)(T)(S)(S),

then distP(S ,T) = 7.

This can be used e.g. to simulate the
k-mer distance
(aka q-gram distance, Ukkonen 1992):

Def. (k-mer distance)
distk(S ,T) =∑
|U|=k |mult(S ,U)−mult(T ,U)|

dist2(S ,T) = 7

Zsuzsanna Lipták BWT everywhere 18 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Let P1 · P2 · · ·Pm a parsing P of DA.

Def. distP(S ,T) =
∑m

i=1 ||Pi |S −|Pi |T |
where |Pi |x is the multiplicity of x in Pi

Ex. Let P be the parsing

DA = (TS)(TS)(T)(T)(TS)(S)(T)(T)(S)(S),

then distP(S ,T) = 7.

This can be used e.g. to simulate the
k-mer distance
(aka q-gram distance, Ukkonen 1992):

Def. (k-mer distance)
distk(S ,T) =∑
|U|=k |mult(S ,U)−mult(T ,U)|

dist2(S ,T) = 7

Zsuzsanna Lipták BWT everywhere 18 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Let P1 · P2 · · ·Pm a parsing P of DA.

Def. distP(S ,T) =
∑m

i=1 ||Pi |S −|Pi |T |
where |Pi |x is the multiplicity of x in Pi

Ex. Let P be the parsing

DA = (TS)(TS)(T)(T)(TS)(S)(T)(T)(S)(S),

then distP(S ,T) = 7.

This can be used e.g. to simulate the
k-mer distance
(aka q-gram distance, Ukkonen 1992):

Def. (k-mer distance)
distk(S ,T) =∑
|U|=k |mult(S ,U)−mult(T ,U)|

dist2(S ,T) = 7

Zsuzsanna Lipták BWT everywhere 18 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Let L = eBWT (S ,T), and DA =
P1 · · ·Pr the parsing of the DA where Pi

corresponds to the ith run of L.

Def. (rho: monotonic block parsing)
ρ(S ,T) =

∑r
i=1 ||Pi |S − |Pi |T |

Ex.
DA = (TS)(TS)(T)(T)(TS)(S)(T)(TS)(S),

ρ(S ,T) = 5

Zsuzsanna Lipták BWT everywhere 19 / 52

S = fukuoka,
T = fujioka.

conjugates L DA

afujiok k T
afukuok k S
fujioka a T
fukuoka a S
iokafuj j T
jiokafu u T
kafujio o T
kafukuo o S
kuokafu u S
okafuji i T
ujiokaf f T
ukuokaf f S
uokafuk k S

Let L = eBWT (S ,T), and DA =
P1 · · ·Pr the parsing of the DA where Pi

corresponds to the ith run of L.

Def. (rho: monotonic block parsing)
ρ(S ,T) =

∑r
i=1 ||Pi |S − |Pi |T |

Ex.
DA = (TS)(TS)(T)(T)(TS)(S)(T)(TS)(S),

ρ(S ,T) = 5

Zsuzsanna Lipták BWT everywhere 19 / 52

Generating
random de Bruijn sequences

L. & Parmigiani, LATIN 2024

Zsuzsanna Lipták BWT everywhere 20 / 52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták BWT everywhere 21 / 52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták BWT everywhere 21 / 52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták BWT everywhere 21 / 52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet Σ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : a
0
a
1
a
2
b
3
a
4
b
5
b
6
b
7

(binary)

k = 3 : aaacaabbabcacccabacbccbbbcb
(ternary)

Easy: length of a dB sequence is σk (σ = |Σ|)

k-mer position
aaa 0
aab 1
aba 2
abb 4
baa 7
bab 3
bba 6
bbb 5

Zsuzsanna Lipták BWT everywhere 21 / 52

de Bruijn sequences
• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph

aaacaabbabcacccabacbccbbbcb

(one of the 373 248 dB seqs for σ = 3, k = 3)

Zsuzsanna Lipták BWT everywhere 22 / 52

de Bruijn sequences
• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph

aaacaabbabcacccabacbccbbbcb

(one of the 373 248 dB seqs for σ = 3, k = 3)

Zsuzsanna Lipták BWT everywhere 22 / 52

de Bruijn sequences
• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph

aaacaabbabcacccabacbccbbbcb

(one of the 373 248 dB seqs for σ = 3, k = 3)

Zsuzsanna Lipták BWT everywhere 22 / 52

de Bruijn sequences
• de Bruijn sequences exist for every k and σ

• There are (σ!)σ
k−1
/σk dB sequences of order k

(Fly Sainte-Marie 1894,

Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

• dB sequences correspond to Euler cycles in the dB graph

aaacaabbabcacccabacbccbbbcb

(one of the 373 248 dB seqs for σ = 3, k = 3)
Zsuzsanna Lipták BWT everywhere 22 / 52

Applications of de Bruijn sequences

• pseudo-random bit generators

• experimental design: reaction time experiments, imaging studies
(MRI)

• computational biology: DNA probe design, DNA microarray, DNA
synthesis

• cryptographic protocols

• . . .

Zsuzsanna Lipták BWT everywhere 23 / 52

The BWT of de Bruijn sequences

(in particular, BWT+RLE does not compress well: many runs!)

N.B. From now on: binary dB sequences (for simplicity).

Zsuzsanna Lipták BWT everywhere 24 / 52

The BWT of de Bruijn sequences

(in particular, BWT+RLE does not compress well: many runs!)

N.B. From now on: binary dB sequences (for simplicity).

Zsuzsanna Lipták BWT everywhere 24 / 52

Construction algorithms

Many algorithms for constructing dB sequences:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:

• one particular dB sequence (e.g. the lex-least dB sequence), or
• a small subset of dB sequences (e.g. linear feedback shift registers)

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dBseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

• number of binary dB sequences = 22k−1−k

Zsuzsanna Lipták BWT everywhere 25 / 52

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:
• one particular dB sequence (e.g. the lex-least dB sequence), or

• a small subset of dB sequences (e.g. linear feedback shift registers)

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dBseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

• number of binary dB sequences = 22k−1−k

Zsuzsanna Lipták BWT everywhere 25 / 52

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:
• one particular dB sequence (e.g. the lex-least dB sequence), or
• a small subset of dB sequences (e.g. linear feedback shift registers)

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dBseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

• number of binary dB sequences = 22k−1−k

Zsuzsanna Lipták BWT everywhere 25 / 52

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences:

• H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)

• Gabric & Sawada, Discr. Math. 2022

• website debruijnsequence.org run by Joe Sawada and others

Most construct:
• one particular dB sequence (e.g. the lex-least dB sequence), or
• a small subset of dB sequences (e.g. linear feedback shift registers)

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dBseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

• number of binary dB sequences = 22k−1−k

Zsuzsanna Lipták BWT everywhere 25 / 52

debruijnsequence.org

Construction of random dB sequences

• The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

• Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták BWT everywhere 26 / 52

Construction of random dB sequences

• The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

• Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták BWT everywhere 26 / 52

Construction of random dB sequences

• The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

• Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták BWT everywhere 26 / 52

Construction of random dB sequences

• The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

• Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták BWT everywhere 26 / 52

Construction of random dB sequences

• The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

• Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

• Our algorithm does just that!

• . . . in near-linear time O(nα(n)), n = length of dB sequence
α = inverse Ackermann function

• . . . and it is beautifully simple at that!

Zsuzsanna Lipták BWT everywhere 26 / 52

The BWT of a dB sequence

T = aaababbb, k = 3

bwt(aaababbb) = baabbaba

Zsuzsanna Lipták BWT everywhere 27 / 52

The BWT of a dB sequence

T = aaababbb, k = 3

bwt(aaababbb) = baabbaba bwt(T) ∈ {ab, ba}2k−1

Zsuzsanna Lipták BWT everywhere 27 / 52

The BWT of a dB sequence

Q. Is every string V ∈ {ab,ba}2k−1
the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

πV = (0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,ab,aabbb} k-mers: aaa, aab, bab, . . .

Zsuzsanna Lipták BWT everywhere 28 / 52

The BWT of a dB sequence

Q. Is every string V ∈ {ab,ba}2k−1
the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

πV = (0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,ab,aabbb} k-mers: aaa, aab, bab, . . .

Zsuzsanna Lipták BWT everywhere 28 / 52

The BWT of a dB sequence

Q. Is every string V ∈ {ab,ba}2k−1
the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

πV = (0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2k such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,ab,aabbb} k-mers: aaa, aab, bab, . . .

Zsuzsanna Lipták BWT everywhere 28 / 52

The basic theorem

Thm (Higgins, 2012) The set {ab,ba}2k−1
is the set of eBWTs of binary

de Bruijn sets of order k .

Corollary A string V ∈ {ab,ba}2k−1
is the BWT of a dB sequence if and

only if πV is cyclic.

Our idea: Take a random V ∈ {ab, ba}2k−1
and turn it into the BWT of

a dB sequence.

Zsuzsanna Lipták BWT everywhere 29 / 52

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB seq T = aaababbb.

Zsuzsanna Lipták BWT everywhere 30 / 52

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB seq T = aaababbb.

Zsuzsanna Lipták BWT everywhere 30 / 52

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB seq T = aaababbb.

Zsuzsanna Lipták BWT everywhere 30 / 52

Lemma (Swap Lemma) Let V be a binary string, Vi 6= Vi+1, and V ′ the
result of swapping Vi and Vi+1.

• If i and i + 1 belong to distinct cycles in of πV then the number of
cycles decreases by one,

• otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = a
0
b
1
b
2
a
3
b
4
a
5
b
6
a
7
, then πV = (0)(1, 4, 6, 7, 3)(2, 5).

• swap V0 and V1 : babababa, st. perm. (0, 4, 6, 7, 3, 1)(2, 5)

• swap V2 and V3 : baabbaba, st. perm. (0, 4, 6, 7, 3, 5, 2, 1)

Invert baabbaba and output the dB seq T = aaababbb.

Zsuzsanna Lipták BWT everywhere 30 / 52

How to choose the blocks to swap

• unhappy block: elements 2i , 2i + 1 are in different cycles

• cycle graph ΓV : vertices = cycles, edges = unhappy blocks

• Spanning Trees of ΓV = (BWTs of) dB sequences closest to V

• here 2 STs: BWTs of aaabbbab, aaababbb

Zsuzsanna Lipták BWT everywhere 31 / 52

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• try it: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on github)

Zsuzsanna Lipták BWT everywhere 32 / 52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• try it: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on github)

Zsuzsanna Lipták BWT everywhere 32 / 52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• try it: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on github)

Zsuzsanna Lipták BWT everywhere 32 / 52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

• first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability
• time O(nα(n))
• space O(n)

• implementation: github.com/lucaparmigiani/rnd_dbseq
• simple (less than 120 lines of C++ code)
• fast (less than one second on a laptop for k up to 23)

• try it: debruijnsequence.org/db/random

• can be straighforwardly extended to any constant-size alphabet
(present on github)

Zsuzsanna Lipták BWT everywhere 32 / 52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

On text indexes
for string collections

Cenzato & L., CPM 2022, Bioinformatics 2024
Cenzato, Guerrini, L., Rosone, DCC 2023

Zsuzsanna Lipták BWT everywhere 33 / 52

BWT of string collections

All that glisters is not gold. (W. Shakespeare, The Merchant of Venice)

All that is referred to as extended BWT is not extended BWT.

Zsuzsanna Lipták BWT everywhere 34 / 52

BWT of string collections

• Often, any BWT of a string collection is called extended BWT.

• Many tools exist for BWT of string collections, but until 2021 none
computed the original eBWT.

Q. So what do these tools compute?

Zsuzsanna Lipták BWT everywhere 35 / 52

The different BWT variants

(Cenzato & L., CPM 2022, Bioinformatics 2024)

• We surveyed 18 different tools and the resulting BWT variants

• We identified 5 distinct BWT variants for string collections, . . .

• . . . and later added a 6th variant, the optimalBWT, which minimizes
r (see later)

• All but the original eBWT use end-of-string symbols ($).

• The BWT variants differ also in the number of runs r .

Zsuzsanna Lipták BWT everywhere 36 / 52

size of data structures is O(r)

Zsuzsanna Lipták BWT everywhere 37 / 52

BWT of text collections with dollars

• Most commonly, the strings are concatenated and then treated like
one string.

• Two methods: multidollarBWT (and variations) and concatBWT

• We showed that all variants can be reduced to multidollarBWT.

Zsuzsanna Lipták BWT everywhere 38 / 52

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA
optimalBWT AAAGGGGC$$$TTACTTGAAA

in color: interesting intervals colex a.k.a. ’rlo’

Zsuzsanna Lipták BWT everywhere 39 / 52

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA
colexBWT(M) AAAGGCGG$$$TTACTGTAAA
concatBWT(M) AAGAGGGC$$$TTACTGTAAA
optimalBWT AAAGGGGC$$$TTACTTGAAA

in color: interesting intervals colex a.k.a. ’rlo’

Zsuzsanna Lipták BWT everywhere 39 / 52

Def. An interval [i , j] is interesting if it is the U$-interval of a
left-maximal shared suffix U.

Ex. U = A

M = {ATATG, TGA, ACG, ATCA, GGA}

A$2 · · · G A$1 · · · C

A$4 · · · C A$2 · · · G

A$5 · · · G A$3 · · · G

(input) (colex)

U ∈ Σ∗ is called a left-maximal shared suffix if there exist two strings S1, S2 ∈ M such
that U is a suffix of S1 and S2 and is preceded by different characters in S1 and S2.

Zsuzsanna Lipták BWT everywhere 40 / 52

Def. An interval [i , j] is interesting if it is the U$-interval of a
left-maximal shared suffix U.

Ex. U = A

M = {ATATG, TGA, ACG, ATCA, GGA}

A$2 · · · G A$1 · · · C

A$4 · · · C A$2 · · · G

A$5 · · · G A$3 · · · G

(input) (colex)

U ∈ Σ∗ is called a left-maximal shared suffix if there exist two strings S1, S2 ∈ M such
that U is a suffix of S1 and S2 and is preceded by different characters in S1 and S2.

Zsuzsanna Lipták BWT everywhere 40 / 52

The colexBWT

colexBWT: sort input strings colexicographically, then multidollarBWT

In the colexBWT, each interesting interval has at most σ runs.

Zsuzsanna Lipták BWT everywhere 41 / 52

The optimalBWT

(Cenzato, Guerrini, L., Rosone, DCC 2023)

• complication due to successive interesting intervals

• based on algorithm by Bentley, Gibney, Thankachan (ESA, 2020)

• we implemented it, combining it with SAIS and BCR

• negligible computational overhead

Zsuzsanna Lipták BWT everywhere 42 / 52

The optimalBWT

(Cenzato, Guerrini, L., Rosone, DCC 2023)

• complication due to successive interesting intervals

• based on algorithm by Bentley, Gibney, Thankachan (ESA, 2020)

• we implemented it, combining it with SAIS and BCR

• negligible computational overhead

Zsuzsanna Lipták BWT everywhere 42 / 52

Improvement by optimalBWT on real biological data:

• in Cenzato & L. (2022, 2024): multipl. factor of up to 4.2

• in Guerrini, Cenzato, L., Rosone (2023): – ”– of up to 31.5

Zsuzsanna Lipták BWT everywhere 43 / 52

What is the output order of the
concatBWT?

Cenzato, L., Masillo, Rossi, forthcoming

Zsuzsanna Lipták BWT everywhere 44 / 52

Observation

• Let U = ε. Then the U-interval is [1, k], where k = |M|.
• k-prefix of the DA = output order.

• The order in all other interesting intervals is induced by this.

Zsuzsanna Lipták BWT everywhere 45 / 52

What is the output order of the concatBWT?

M = {ATATG, TGA, ACG, ATCA, GGA}

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

rotation concatBWT DA
$#ATATG$TGAACGATCA$GGA A 5
ACGATCAGGA#ATATG$TGA A 2
$ATCA$GGA$#ATATG$TGA$ACG G 3
GGA#ATATGTGAACG$ATCA A 4
TGAACG$ATCA$GGA$#ATATG G 1

.

Zsuzsanna Lipták BWT everywhere 46 / 52

Map the strings to their lexicographic rank:

What is the output order of the concatBWT?
[Cenzato, L., Masillo, Rossi, forthcoming]

M = [ATATG, TGA, ACG, ATCA, GGA] 7! ATATGTGAACG$ATCA$GGA$#

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

Map strings to their lexicographic rank:

ACG 7! a

ATATG 7! b

ATCA 7! c

GGA 7! d

TGA 7! e

M = ATATG| {z }
b

$ TGA|{z}
e

$ ACG|{z}
a

$ ATCA| {z }
c

$ GGA|{z}
d

$# 7! beacd#.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 26 / 39

ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

input: b e a c d # output: d e a c b (DA : 5, 2, 3, 4, 1)

We realized that this is the BWT of the metacharacter-string! (almost)

b e a c d #

e a c d # b

a c d # b e

c d # b e a

d # b e a c

b e a c d

−→
lexicographic

order

b e a c d

a c d # b e

b e a c d #

c d # b e a

d # b e a c

e a c d # b

output order: bwt(beacd#) = de#acb deacb

Zsuzsanna Lipták BWT everywhere 47 / 52

Map the strings to their lexicographic rank:

What is the output order of the concatBWT?
[Cenzato, L., Masillo, Rossi, forthcoming]

M = [ATATG, TGA, ACG, ATCA, GGA] 7! ATATGTGAACG$ATCA$GGA$#

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

Map strings to their lexicographic rank:

ACG 7! a

ATATG 7! b

ATCA 7! c

GGA 7! d

TGA 7! e

M = ATATG| {z }
b

$ TGA|{z}
e

$ ACG|{z}
a

$ ATCA| {z }
c

$ GGA|{z}
d

$# 7! beacd#.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 26 / 39

ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

input: b e a c d # output: d e a c b (DA : 5, 2, 3, 4, 1)

We realized that this is the BWT of the metacharacter-string! (almost)

b e a c d #

e a c d # b

a c d # b e

c d # b e a

d # b e a c

b e a c d

−→
lexicographic

order

b e a c d

a c d # b e

b e a c d #

c d # b e a

d # b e a c

e a c d # b

output order: bwt(beacd#) = de#acb deacb

Zsuzsanna Lipták BWT everywhere 47 / 52

Map the strings to their lexicographic rank:

What is the output order of the concatBWT?
[Cenzato, L., Masillo, Rossi, forthcoming]

M = [ATATG, TGA, ACG, ATCA, GGA] 7! ATATGTGAACG$ATCA$GGA$#

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

Map strings to their lexicographic rank:

ACG 7! a

ATATG 7! b

ATCA 7! c

GGA 7! d

TGA 7! e

M = ATATG| {z }
b

$ TGA|{z}
e

$ ACG|{z}
a

$ ATCA| {z }
c

$ GGA|{z}
d

$# 7! beacd#.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 26 / 39

ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

input: b e a c d # output: d e a c b (DA : 5, 2, 3, 4, 1)

We realized that this is the BWT of the metacharacter-string! (almost)

b e a c d #

e a c d # b

a c d # b e

c d # b e a

d # b e a c

b e a c d

−→
lexicographic

order

b e a c d

a c d # b e

b e a c d #

c d # b e a

d # b e a c

e a c d # b

output order: bwt(beacd#) = de#acb deacb

Zsuzsanna Lipták BWT everywhere 47 / 52

Map the strings to their lexicographic rank:

What is the output order of the concatBWT?
[Cenzato, L., Masillo, Rossi, forthcoming]

M = [ATATG, TGA, ACG, ATCA, GGA] 7! ATATGTGAACG$ATCA$GGA$#

concatBWT(M) = BWT(ATATGTGAACG$ATCA$GGA$#)

Map strings to their lexicographic rank:

ACG 7! a

ATATG 7! b

ATCA 7! c

GGA 7! d

TGA 7! e

M = ATATG| {z }
b

$ TGA|{z}
e

$ ACG|{z}
a

$ ATCA| {z }
c

$ GGA|{z}
d

$# 7! beacd#.

Zsuzsanna Lipták Combinatorics of the BWT of string collections 26 / 39

ATATG︸ ︷︷ ︸
b

$ TGA︸︷︷︸
e

$ ACG︸︷︷︸
a

$ ATCA︸ ︷︷ ︸
c

$ GGA︸︷︷︸
d

$# 7→ beacd#.

input: b e a c d # output: d e a c b (DA : 5, 2, 3, 4, 1)

We realized that this is the BWT of the metacharacter-string! (almost)

b e a c d #

e a c d # b

a c d # b e

c d # b e a

d # b e a c

b e a c d

−→
lexicographic

order

b e a c d

a c d # b e

b e a c d #

c d # b e a

d # b e a c

e a c d # b

output order: bwt(beacd#) = de#acb deacb

Zsuzsanna Lipták BWT everywhere 47 / 52

• the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

• on most datasets, the concatBWT and the multidolBWT will differ

• the concatBWT cannot produce all BWT variants:

12 A survey of BWT variants for string collections

Let �fl be the linking permutation [33] of fl, defined by �fl(i) = fl(fl≠1(i)+1), for i ”= fl(k),
and �fl(fl(k)) = fl(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j œ {1, . . . , k} and i ”= j,
fj(i) by fj(i) = i if i < j and i ≠ 1 otherwise, i.e. fj(i) gives the rank of element i in the set
{1, . . . , k} \ {j}. The next lemma gives the precise relationship between fl and ficonc.

I Lemma 5. Let fl be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank fl(i). Then ficonc = ficonc(fl) is given by:

ficonc(1) = fl(k), and for i ”= fl(k) : fi≠1
conc(i) = ffl(1)(�fl(i)) + 1. (1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT. J

Essentially, Lemma 5 says that ficonc is the BWT of fl. (We thank Massimiliano Rossi for
this observation.) This can be seen as follows. Take the string collection M in order fl and
construct a new string T fl concatenating the lexicographic ranks of the strings in M with a
final dollar, in our example T fl = 25134$; thus, T fl is a string over the alphabet {1, 2, . . . , k}
with an additional dollar at the end. It follows from Lemma 5 that the output permutation
ficonc is the BWT of T fl, from which the $-sign was removed: BWT(25134$) = 45$132,
therefore, ficonc = 45132.

I Example 6. The mapping fl ‘æ ficonc for k = 3 is as follows: 123 ‘æ 312, 132 ‘æ 231,
312 ‘æ 231, 213 ‘æ 321, 231 ‘æ 132, and 321 ‘æ 123. Note that no fl maps to 213.

As can be seen already for k = 3, not all permutations fi are reached by this mapping. We
will call a permutation fi conc-feasible if there exists an input order fl such that ficonc(fl) = fi.
For k = 4, there are 18 conc-feasible permutations (out of 24), for k = 5, 82 (out of 120).
In Table 7, we give the percentage of conc-feasible permutations fi, for k up to 11. The
lexicographic order is always conc-feasible, namely with fl = k, k ≠ 1, . . . , 2, 1; the colex order
is not always conc-feasible, as the following example shows.

k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 7 Percentage of conc-feasible permutations w.r.t. concBWT.

I Example 7. Let M = {ACA, TGA, GAA}, thus fl = 132, “ = 213, but as we have seen,
no permutation of the strings in M will yield this order for concBWT. In particular, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all conc-feasible concatBWTs have at
least 8: AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that, given an input permutation fl, the output permutations
induced by mdolBWT and concBWT are always di�erent: fimdol ”= ficonc holds always, since
ficonc(1) = fl(k). This means that, in whatever order the strings are given, on most string
sets the resulting transforms mdolBWT and concBWT will di�er.

4.1 Permutations on multisets
Now let M be a multiset, so the same string can be contained more than once in M. Let
us again map M to a string T fl over the alphabet of the lexicographic ranks {1, 2, . . . , kÕ},
where kÕ Æ k, and let us define the output order fi as before, as the order in which the

• only those which, inserting # somewhere, can become the BWT of
some meta-string

• examples already on 3 strings where it cannot produce the
optimalBWT

• a first study of strings which are the bwt∗ of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Lipták BWT everywhere 48 / 52

• the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

• on most datasets, the concatBWT and the multidolBWT will differ

• the concatBWT cannot produce all BWT variants:

12 A survey of BWT variants for string collections

Let �fl be the linking permutation [33] of fl, defined by �fl(i) = fl(fl≠1(i)+1), for i ”= fl(k),
and �fl(fl(k)) = fl(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j œ {1, . . . , k} and i ”= j,
fj(i) by fj(i) = i if i < j and i ≠ 1 otherwise, i.e. fj(i) gives the rank of element i in the set
{1, . . . , k} \ {j}. The next lemma gives the precise relationship between fl and ficonc.

I Lemma 5. Let fl be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank fl(i). Then ficonc = ficonc(fl) is given by:

ficonc(1) = fl(k), and for i ”= fl(k) : fi≠1
conc(i) = ffl(1)(�fl(i)) + 1. (1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT. J

Essentially, Lemma 5 says that ficonc is the BWT of fl. (We thank Massimiliano Rossi for
this observation.) This can be seen as follows. Take the string collection M in order fl and
construct a new string T fl concatenating the lexicographic ranks of the strings in M with a
final dollar, in our example T fl = 25134$; thus, T fl is a string over the alphabet {1, 2, . . . , k}
with an additional dollar at the end. It follows from Lemma 5 that the output permutation
ficonc is the BWT of T fl, from which the $-sign was removed: BWT(25134$) = 45$132,
therefore, ficonc = 45132.

I Example 6. The mapping fl ‘æ ficonc for k = 3 is as follows: 123 ‘æ 312, 132 ‘æ 231,
312 ‘æ 231, 213 ‘æ 321, 231 ‘æ 132, and 321 ‘æ 123. Note that no fl maps to 213.

As can be seen already for k = 3, not all permutations fi are reached by this mapping. We
will call a permutation fi conc-feasible if there exists an input order fl such that ficonc(fl) = fi.
For k = 4, there are 18 conc-feasible permutations (out of 24), for k = 5, 82 (out of 120).
In Table 7, we give the percentage of conc-feasible permutations fi, for k up to 11. The
lexicographic order is always conc-feasible, namely with fl = k, k ≠ 1, . . . , 2, 1; the colex order
is not always conc-feasible, as the following example shows.

k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 7 Percentage of conc-feasible permutations w.r.t. concBWT.

I Example 7. Let M = {ACA, TGA, GAA}, thus fl = 132, “ = 213, but as we have seen,
no permutation of the strings in M will yield this order for concBWT. In particular, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all conc-feasible concatBWTs have at
least 8: AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that, given an input permutation fl, the output permutations
induced by mdolBWT and concBWT are always di�erent: fimdol ”= ficonc holds always, since
ficonc(1) = fl(k). This means that, in whatever order the strings are given, on most string
sets the resulting transforms mdolBWT and concBWT will di�er.

4.1 Permutations on multisets
Now let M be a multiset, so the same string can be contained more than once in M. Let
us again map M to a string T fl over the alphabet of the lexicographic ranks {1, 2, . . . , kÕ},
where kÕ Æ k, and let us define the output order fi as before, as the order in which the

• only those which, inserting # somewhere, can become the BWT of
some meta-string

• examples already on 3 strings where it cannot produce the
optimalBWT

• a first study of strings which are the bwt∗ of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Lipták BWT everywhere 48 / 52

• the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

• on most datasets, the concatBWT and the multidolBWT will differ

• the concatBWT cannot produce all BWT variants:

12 A survey of BWT variants for string collections

Let �fl be the linking permutation [33] of fl, defined by �fl(i) = fl(fl≠1(i)+1), for i ”= fl(k),
and �fl(fl(k)) = fl(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j œ {1, . . . , k} and i ”= j,
fj(i) by fj(i) = i if i < j and i ≠ 1 otherwise, i.e. fj(i) gives the rank of element i in the set
{1, . . . , k} \ {j}. The next lemma gives the precise relationship between fl and ficonc.

I Lemma 5. Let fl be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank fl(i). Then ficonc = ficonc(fl) is given by:

ficonc(1) = fl(k), and for i ”= fl(k) : fi≠1
conc(i) = ffl(1)(�fl(i)) + 1. (1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT. J

Essentially, Lemma 5 says that ficonc is the BWT of fl. (We thank Massimiliano Rossi for
this observation.) This can be seen as follows. Take the string collection M in order fl and
construct a new string T fl concatenating the lexicographic ranks of the strings in M with a
final dollar, in our example T fl = 25134$; thus, T fl is a string over the alphabet {1, 2, . . . , k}
with an additional dollar at the end. It follows from Lemma 5 that the output permutation
ficonc is the BWT of T fl, from which the $-sign was removed: BWT(25134$) = 45$132,
therefore, ficonc = 45132.

I Example 6. The mapping fl ‘æ ficonc for k = 3 is as follows: 123 ‘æ 312, 132 ‘æ 231,
312 ‘æ 231, 213 ‘æ 321, 231 ‘æ 132, and 321 ‘æ 123. Note that no fl maps to 213.

As can be seen already for k = 3, not all permutations fi are reached by this mapping. We
will call a permutation fi conc-feasible if there exists an input order fl such that ficonc(fl) = fi.
For k = 4, there are 18 conc-feasible permutations (out of 24), for k = 5, 82 (out of 120).
In Table 7, we give the percentage of conc-feasible permutations fi, for k up to 11. The
lexicographic order is always conc-feasible, namely with fl = k, k ≠ 1, . . . , 2, 1; the colex order
is not always conc-feasible, as the following example shows.

k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 7 Percentage of conc-feasible permutations w.r.t. concBWT.

I Example 7. Let M = {ACA, TGA, GAA}, thus fl = 132, “ = 213, but as we have seen,
no permutation of the strings in M will yield this order for concBWT. In particular, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all conc-feasible concatBWTs have at
least 8: AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that, given an input permutation fl, the output permutations
induced by mdolBWT and concBWT are always di�erent: fimdol ”= ficonc holds always, since
ficonc(1) = fl(k). This means that, in whatever order the strings are given, on most string
sets the resulting transforms mdolBWT and concBWT will di�er.

4.1 Permutations on multisets
Now let M be a multiset, so the same string can be contained more than once in M. Let
us again map M to a string T fl over the alphabet of the lexicographic ranks {1, 2, . . . , kÕ},
where kÕ Æ k, and let us define the output order fi as before, as the order in which the

• only those which, inserting # somewhere, can become the BWT of
some meta-string

• examples already on 3 strings where it cannot produce the
optimalBWT

• a first study of strings which are the bwt∗ of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Lipták BWT everywhere 48 / 52

• the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

• on most datasets, the concatBWT and the multidolBWT will differ

• the concatBWT cannot produce all BWT variants:

12 A survey of BWT variants for string collections

Let �fl be the linking permutation [33] of fl, defined by �fl(i) = fl(fl≠1(i)+1), for i ”= fl(k),
and �fl(fl(k)) = fl(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j œ {1, . . . , k} and i ”= j,
fj(i) by fj(i) = i if i < j and i ≠ 1 otherwise, i.e. fj(i) gives the rank of element i in the set
{1, . . . , k} \ {j}. The next lemma gives the precise relationship between fl and ficonc.

I Lemma 5. Let fl be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank fl(i). Then ficonc = ficonc(fl) is given by:

ficonc(1) = fl(k), and for i ”= fl(k) : fi≠1
conc(i) = ffl(1)(�fl(i)) + 1. (1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT. J

Essentially, Lemma 5 says that ficonc is the BWT of fl. (We thank Massimiliano Rossi for
this observation.) This can be seen as follows. Take the string collection M in order fl and
construct a new string T fl concatenating the lexicographic ranks of the strings in M with a
final dollar, in our example T fl = 25134$; thus, T fl is a string over the alphabet {1, 2, . . . , k}
with an additional dollar at the end. It follows from Lemma 5 that the output permutation
ficonc is the BWT of T fl, from which the $-sign was removed: BWT(25134$) = 45$132,
therefore, ficonc = 45132.

I Example 6. The mapping fl ‘æ ficonc for k = 3 is as follows: 123 ‘æ 312, 132 ‘æ 231,
312 ‘æ 231, 213 ‘æ 321, 231 ‘æ 132, and 321 ‘æ 123. Note that no fl maps to 213.

As can be seen already for k = 3, not all permutations fi are reached by this mapping. We
will call a permutation fi conc-feasible if there exists an input order fl such that ficonc(fl) = fi.
For k = 4, there are 18 conc-feasible permutations (out of 24), for k = 5, 82 (out of 120).
In Table 7, we give the percentage of conc-feasible permutations fi, for k up to 11. The
lexicographic order is always conc-feasible, namely with fl = k, k ≠ 1, . . . , 2, 1; the colex order
is not always conc-feasible, as the following example shows.

k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 7 Percentage of conc-feasible permutations w.r.t. concBWT.

I Example 7. Let M = {ACA, TGA, GAA}, thus fl = 132, “ = 213, but as we have seen,
no permutation of the strings in M will yield this order for concBWT. In particular, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all conc-feasible concatBWTs have at
least 8: AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that, given an input permutation fl, the output permutations
induced by mdolBWT and concBWT are always di�erent: fimdol ”= ficonc holds always, since
ficonc(1) = fl(k). This means that, in whatever order the strings are given, on most string
sets the resulting transforms mdolBWT and concBWT will di�er.

4.1 Permutations on multisets
Now let M be a multiset, so the same string can be contained more than once in M. Let
us again map M to a string T fl over the alphabet of the lexicographic ranks {1, 2, . . . , kÕ},
where kÕ Æ k, and let us define the output order fi as before, as the order in which the

• only those which, inserting # somewhere, can become the BWT of
some meta-string

• examples already on 3 strings where it cannot produce the
optimalBWT

• a first study of strings which are the bwt∗ of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Lipták BWT everywhere 48 / 52

• the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

• on most datasets, the concatBWT and the multidolBWT will differ

• the concatBWT cannot produce all BWT variants:

12 A survey of BWT variants for string collections

Let �fl be the linking permutation [33] of fl, defined by �fl(i) = fl(fl≠1(i)+1), for i ”= fl(k),
and �fl(fl(k)) = fl(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j œ {1, . . . , k} and i ”= j,
fj(i) by fj(i) = i if i < j and i ≠ 1 otherwise, i.e. fj(i) gives the rank of element i in the set
{1, . . . , k} \ {j}. The next lemma gives the precise relationship between fl and ficonc.

I Lemma 5. Let fl be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank fl(i). Then ficonc = ficonc(fl) is given by:

ficonc(1) = fl(k), and for i ”= fl(k) : fi≠1
conc(i) = ffl(1)(�fl(i)) + 1. (1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT. J

Essentially, Lemma 5 says that ficonc is the BWT of fl. (We thank Massimiliano Rossi for
this observation.) This can be seen as follows. Take the string collection M in order fl and
construct a new string T fl concatenating the lexicographic ranks of the strings in M with a
final dollar, in our example T fl = 25134$; thus, T fl is a string over the alphabet {1, 2, . . . , k}
with an additional dollar at the end. It follows from Lemma 5 that the output permutation
ficonc is the BWT of T fl, from which the $-sign was removed: BWT(25134$) = 45$132,
therefore, ficonc = 45132.

I Example 6. The mapping fl ‘æ ficonc for k = 3 is as follows: 123 ‘æ 312, 132 ‘æ 231,
312 ‘æ 231, 213 ‘æ 321, 231 ‘æ 132, and 321 ‘æ 123. Note that no fl maps to 213.

As can be seen already for k = 3, not all permutations fi are reached by this mapping. We
will call a permutation fi conc-feasible if there exists an input order fl such that ficonc(fl) = fi.
For k = 4, there are 18 conc-feasible permutations (out of 24), for k = 5, 82 (out of 120).
In Table 7, we give the percentage of conc-feasible permutations fi, for k up to 11. The
lexicographic order is always conc-feasible, namely with fl = k, k ≠ 1, . . . , 2, 1; the colex order
is not always conc-feasible, as the following example shows.

k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 7 Percentage of conc-feasible permutations w.r.t. concBWT.

I Example 7. Let M = {ACA, TGA, GAA}, thus fl = 132, “ = 213, but as we have seen,
no permutation of the strings in M will yield this order for concBWT. In particular, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all conc-feasible concatBWTs have at
least 8: AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that, given an input permutation fl, the output permutations
induced by mdolBWT and concBWT are always di�erent: fimdol ”= ficonc holds always, since
ficonc(1) = fl(k). This means that, in whatever order the strings are given, on most string
sets the resulting transforms mdolBWT and concBWT will di�er.

4.1 Permutations on multisets
Now let M be a multiset, so the same string can be contained more than once in M. Let
us again map M to a string T fl over the alphabet of the lexicographic ranks {1, 2, . . . , kÕ},
where kÕ Æ k, and let us define the output order fi as before, as the order in which the

• only those which, inserting # somewhere, can become the BWT of
some meta-string

• examples already on 3 strings where it cannot produce the
optimalBWT

• a first study of strings which are the bwt∗ of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Lipták BWT everywhere 48 / 52

• the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

• on most datasets, the concatBWT and the multidolBWT will differ

• the concatBWT cannot produce all BWT variants:

12 A survey of BWT variants for string collections

Let �fl be the linking permutation [33] of fl, defined by �fl(i) = fl(fl≠1(i)+1), for i ”= fl(k),
and �fl(fl(k)) = fl(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j œ {1, . . . , k} and i ”= j,
fj(i) by fj(i) = i if i < j and i ≠ 1 otherwise, i.e. fj(i) gives the rank of element i in the set
{1, . . . , k} \ {j}. The next lemma gives the precise relationship between fl and ficonc.

I Lemma 5. Let fl be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank fl(i). Then ficonc = ficonc(fl) is given by:

ficonc(1) = fl(k), and for i ”= fl(k) : fi≠1
conc(i) = ffl(1)(�fl(i)) + 1. (1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT. J

Essentially, Lemma 5 says that ficonc is the BWT of fl. (We thank Massimiliano Rossi for
this observation.) This can be seen as follows. Take the string collection M in order fl and
construct a new string T fl concatenating the lexicographic ranks of the strings in M with a
final dollar, in our example T fl = 25134$; thus, T fl is a string over the alphabet {1, 2, . . . , k}
with an additional dollar at the end. It follows from Lemma 5 that the output permutation
ficonc is the BWT of T fl, from which the $-sign was removed: BWT(25134$) = 45$132,
therefore, ficonc = 45132.

I Example 6. The mapping fl ‘æ ficonc for k = 3 is as follows: 123 ‘æ 312, 132 ‘æ 231,
312 ‘æ 231, 213 ‘æ 321, 231 ‘æ 132, and 321 ‘æ 123. Note that no fl maps to 213.

As can be seen already for k = 3, not all permutations fi are reached by this mapping. We
will call a permutation fi conc-feasible if there exists an input order fl such that ficonc(fl) = fi.
For k = 4, there are 18 conc-feasible permutations (out of 24), for k = 5, 82 (out of 120).
In Table 7, we give the percentage of conc-feasible permutations fi, for k up to 11. The
lexicographic order is always conc-feasible, namely with fl = k, k ≠ 1, . . . , 2, 1; the colex order
is not always conc-feasible, as the following example shows.

k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 7 Percentage of conc-feasible permutations w.r.t. concBWT.

I Example 7. Let M = {ACA, TGA, GAA}, thus fl = 132, “ = 213, but as we have seen,
no permutation of the strings in M will yield this order for concBWT. In particular, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all conc-feasible concatBWTs have at
least 8: AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that, given an input permutation fl, the output permutations
induced by mdolBWT and concBWT are always di�erent: fimdol ”= ficonc holds always, since
ficonc(1) = fl(k). This means that, in whatever order the strings are given, on most string
sets the resulting transforms mdolBWT and concBWT will di�er.

4.1 Permutations on multisets
Now let M be a multiset, so the same string can be contained more than once in M. Let
us again map M to a string T fl over the alphabet of the lexicographic ranks {1, 2, . . . , kÕ},
where kÕ Æ k, and let us define the output order fi as before, as the order in which the

• only those which, inserting # somewhere, can become the BWT of
some meta-string

• examples already on 3 strings where it cannot produce the
optimalBWT

• a first study of strings which are the bwt∗ of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Lipták BWT everywhere 48 / 52

Summary (BWT everywhere)

Zsuzsanna Lipták BWT everywhere 49 / 52

Conclusions

1. There is more to the BWT than just compression.

– For instance, it can be used to generate
random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.
– do not use the concatBWT.
– use the multidollarBWT or the original eBWT.
– even better: use the optimalBWT.

3. Definition of the number of runs r for string collections should be
standardized (optBWT or colexBWT).

Zsuzsanna Lipták BWT everywhere 50 / 52

Conclusions

1. There is more to the BWT than just compression.
– For instance, it can be used to generate

random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.
– do not use the concatBWT.
– use the multidollarBWT or the original eBWT.
– even better: use the optimalBWT.

3. Definition of the number of runs r for string collections should be
standardized (optBWT or colexBWT).

Zsuzsanna Lipták BWT everywhere 50 / 52

Conclusions

1. There is more to the BWT than just compression.
– For instance, it can be used to generate

random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.

– do not use the concatBWT.
– use the multidollarBWT or the original eBWT.
– even better: use the optimalBWT.

3. Definition of the number of runs r for string collections should be
standardized (optBWT or colexBWT).

Zsuzsanna Lipták BWT everywhere 50 / 52

Conclusions

1. There is more to the BWT than just compression.
– For instance, it can be used to generate

random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.
– do not use the concatBWT.
– use the multidollarBWT or the original eBWT.
– even better: use the optimalBWT.

3. Definition of the number of runs r for string collections should be
standardized (optBWT or colexBWT).

Zsuzsanna Lipták BWT everywhere 50 / 52

Conclusions

1. There is more to the BWT than just compression.
– For instance, it can be used to generate

random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.
– do not use the concatBWT.
– use the multidollarBWT or the original eBWT.
– even better: use the optimalBWT.

3. Definition of the number of runs r for string collections should be
standardized (optBWT or colexBWT).

Zsuzsanna Lipták BWT everywhere 50 / 52

Acknowledgements

Massimiliano Rossi Sara Giuliani Davide Cenzato Francesco Masillo

Luca Parmigiani Veronica Guerrini Giovanna Rosone

Zsuzsanna Lipták BWT everywhere 51 / 52

rukrn!h t Ttnoaeifyyuotnaoo

s?utoinesQ

Zsuzsanna Lipták BWT everywhere 52 / 52

rukrn!h t Ttnoaeifyyuotnaoo

s?utoinesQ

Zsuzsanna Lipták BWT everywhere 52 / 52

