
NP completeness

Course “Discrete Biological Models” (Modelli Biologici Discreti)

Zsuzsanna Lipták

Laurea Triennale in Bioinformatica

a.a. 2014/15, fall term

NP-completeness and the real world

Imagine you are working for a biotech company. One day your boss calls
you and tells you that they have invented a new sequencing technology. It
generates lots of fragments of the target molecule, which may overlap.
Your job as chief algorithm designer is to write a program that
reconstructs the target molecule.

You get to work . . .

you find that . . .

• you need a superstring (of all fragments)

• a shortest superstring

• you need to maximize the overlaps

• any superstring is just a permutation of the fragments

• you need the/a best permutation (which maximizes total overlap)

2 / 39

NP-completeness and the real world

Imagine you are working for a biotech company. One day your boss calls
you and tells you that they have invented a new sequencing technology. It
generates lots of fragments of the target molecule, which may overlap.
Your job as chief algorithm designer is to write a program that
reconstructs the target molecule.

You get to work . . .
you find that . . .

• you need a superstring (of all fragments)

• a shortest superstring

• you need to maximize the overlaps

• any superstring is just a permutation of the fragments

• you need the/a best permutation (which maximizes total overlap)

2 / 39

NP-completeness and the real world (2)

But after weeks and weeks and weeks . . .
all you have come up with is:

Exhaustive algorithm
List all possible permutations and choose the best.

3 / 39

NP-completeness and the real world (3)

This is no good, since for 1,000 fragments (typical experiment) this would
need far longer than the age of the universe. Why?

• 1000! ⇡ 4 · 102567 permutations source: Wolfram Alpha

• say we need 1000 operations per permutation (summing overlaps)

• if we have a computer that does 1 billion (= 109) operations/sec

• it can handle 1 million (106) permutations per second

• So it will take 4 · 102567/106 = 4 · 102561 seconds

Age of the universe:

about 14 billion years ⇡ 4 · 1017 seconds source: Wikipedia

We can see that a million (106) or a billion (109) times faster computer
wouldn’t help much, either. Nor would faster handling of the permutations.

4 / 39

So you can go to your boss and say:

Bad idea, you may get fired!

source: Garey & Johnson, A Guide to the Theory of NP-completeness, 1979

5 / 39

Or you could say:

Unfortunately, it is very hard to do impossibility proofs. . .

source: Garey & Johnson, A Guide to the Theory of NP-completeness, 1979

6 / 39

You prove that the reconstruction problem is NP-complete, and you say:

So it makes no sense to fire you and get another expert!

source: Garey & Johnson, A Guide to the Theory of NP-completeness, 1979

7 / 39

Overview

• P - class of problems that can be solved e�ciently (i.e., in
polynomial time)

• NP - class of problems that can solved in polynomial time by a
non-deterministic Turing machine (nicer definition to follow)

• NP-complete problems - maximally di�cult problems in NP : every
other problem can be transformed into these in polynomial time
(details later)

• NP-hard problems - like NP-complete problems, but not necessarily in
NP

8 / 39

Overview

Usual way of drawing the classes P and NP :

NP!complete

problems

NP!hard

problems

P

NP

9 / 39

The class P

Definition
A decision problem X is in P if there is a polynomial time algorithm A
which solves X .

A decision problem is one that allows only YES or NO answers.

Examples

• Given a sorted array of n numbers, is number x present?
O(log n) time

• Given an array of n numbers, is number x present? O(n) time

• Given a graph G , is G Eulerian? O(n +m) time, where
n = |V |,m = |E (G)|.
Details: Determine for each vertex whether it has even degree (or whether it

is balanced if G is a digraph) in O(n) time; determine with BFS whether G

is connected in O(n +m) time.

10 / 39

Polynomial time algorithms

Algorithm A is polynomial time if there is a polynomial p s.t. for every
input I of size n, A terminates in at most p(n) steps.

size is usually measured in bits, number of elements (for an integer array), number of

vertices and edges (for graphs), number of characters (for strings)

11 / 39

The class NP

NP - class of problems that can solved in polynomial time by a
non-deterministic Turing machine (non-deterministic polynomial time)

alternative definition:

NP = class of polynomial time checkable problems
Whenever the answer is YES, there must exist a certificate (proof) of this,
and it must be checkable (verifiable) in polynomial time.

Example
Problem: Given a graph G = (V ,E), is G Hamiltonian (i.e. does it have
a Hamiltonian cycle)?
Certificate: A Hamiltonian cycle: check whether it is a cycle, and whether
it contains every vertex exactly once, in O(n) time, where n = |V |.

12 / 39

The class NP

NP = class of polynomial time checkable problems
Whenever the answer is YES, there must exist a certificate (proof) of this,
and it must be checkable (verifiable) in polynomial time.

Example
Problem: Given a fragment set F of m fragments, does a superstring of
length  k exist?

Certificate: a superstring S of length  k : check for every f whether f is
substring of S , in O(|f |+ |S |) time; altogether O(||F||+m|S |) time, so
polynomial in input size.

input: F , inputsize: ||F|| =
Pm

i=1

|fi |, |S | 
P

i |fi |, so m|S |  ||F||2

13 / 39

The class NP

NP = class of polynomial time checkable problems
Whenever the answer is YES, there must exist a certificate (proof) of this,
and it must be checkable (verifiable) in polynomial time.

Example
Problem: Given a complete digraph G = (V ,E) with non-negative
weights on edges, does it have a Hamiltonian path of weight at least r?

Certificate: a Ham. path of weight � r : check weight of path, check
whether it contains every vertex exactly once, in O(n) time, where n = |V |

14 / 39

P and NP

NP!complete

problems

NP!hard

problems

P

NP

15 / 39

The P = NP question

One of the big open question of computer science is:

Is P = NP?

• Since P ✓ NP is clear, the
question is: NP ✓ P?

• Can every problem in NP be solved
e�ciently?

• I.e. is the shaded area empty?

NP!complete

problems

NP!hard

problems

P

NP

N.B.: There is a US $ 1,000,000 prize for solving this question.

16 / 39

The P = NP question

Most people believe: P 6= NP .

17 / 39

NP-complete and NP-hard problems

NP-complete problems
A problem X is NP-complete if

• it is in NP

• every problem in NP can be transformed/reduced to it in polynomial
time (details soon)

NP-hard problems
A problem X is NP-hard if

• every problem in NP can be transformed/reduced to it in polynomial
time (details soon)

i.e., the only di↵erence is that it is not necessarily itself in NP .

18 / 39

NP-complete and NP-hard problems

Theorem
Let X be an NP-complete or NP-hard problem. If we find a polynomial
time algorithm for X , then P = NP .

Corollary
Let X be an NP-complete or NP-hard problem. Then there is no
polynomial time algorithm for X , unless P = NP .

Since we all believe that P 6= NP , this means in practical terms:

In practice
Let X be an NP-complete or NP-hard problem. Then there is no
polynomial time algorithm for X , fullstop.

19 / 39

NP-complete problems

Michael R. Garey, David S. Johnson, Computers and Intractability - A
Guide to the Theory of NP-completeness, 1979

one of the best known and most cited books ever in computer science
20 / 39

NP-complete problems
Contains a list of known NP-complete problems:

21 / 39

NP-complete problems
You have found your problem (the Shortest Common Superstring Problem) in the

Garey-Johnson:

22 / 39

Decision problems vs. optimization problems

Optimization problem
Given F , find a shortest common superstring S .

Decision problem
Given F , does a common superstring S exist with |S |  k?

N.B.
If I can solve the decision problem, then I can also solve a reduced version
of the optimization problem: determining the length of an SCS.
Use log(||F||) many calls to the decision problem.

(Details: Determine the length of an SCS using binary search: Let N = ||F||. We

know that a common superstring exists with length N, namely the concatenation

of all f 2 F . Now set k = N/2; if the answer is YES, continue with k = N/4,

else with k = 3N/4, etc.)

24 / 39

Decision problems vs. optimization problems

NP!complete

problems

NP!hard

problems

P

NP

• Many NP-hard problems are optimization versions of NP-complete problems.

• If the decision version is NP-complete, then the optimization version is
automatically NP-hard. (Why?)

• So it’s enough to prove that the decision version is NP-complete. (Or to
find it in the Garey-Johnson.)

25 / 39

Polynomial time reductions/transformations

Now we want to talk about NP-complete problems. These are the ones to
which all others in NP can be reduced in polynomial time. What does this
mean?

“Translate problem X to problem Y in polynomial time”

Definition
We say that problem X is polynomial time reducible to problem Y ,
X p Y , if there is an algorithm A and a polynomial p, s.t. for every
instance I of X , A constructs an instance J of Y in time p(|I |) such that:

I is a YES-instance of X , J is a YES-instance of Y .

26 / 39

An example reduction

SCS-decision
Given: Fragment set F
Question:
Does a superstring of length  k
exist?

Example
{TACC, CGGACT, ACTAC, ACGGA}

Weighted Hamiltonian
path-decision
Given: A weighted complete
digraph G .
Question: Does G have a Ham.
path of weight � ||F||� k?

a = TACC

b = ACTAC

c = CGGACT

d = ACGGA

1

1

1
3

3 4

1

2

27 / 39

An example reduction

Let F contain m fragments of length r .

• Time for transformation: O(m2r2), (or even faster): the time of the
transformation is dominated by the time for computing the overlaps
between the fragments, i.e. the weights on the edges

• This is polynomial in the input size ||F|| = mr (namely, with
polynomial p(n) = n2).

• YES on the left , YES on the right

• Therefore we have shown:
SCS-decision p Weighted Hamiltonian path-decision

28 / 39

Polynomial time reductions/transformations

Definition (again)

We say that problem X is polynomial time reducible to problem Y ,
X p Y , if there is an algorithm A and a polynomial p, s.t. for every
instance I of X , A constructs an instance J of Y in time p(|I |) such that:

I is a YES-instance of X , J is a YES-instance of Y .

N.B.

• Think of X p Y as meaning: X is ”not harder” than Y
• Note that we are still paying for the reduction/transformation: it
takes polynomial time!

There are important technical di↵erences between Karp-reductions/transformations (R.

Karp, 1972), and Turing-reductions (S. Cook, 1971), which we are ignoring here.

29 / 39

Polynomial time reductions/transformations

NP-complete problems
A problem X is NP-complete if

• it is in NP

• for every problem Y 2 NP : Y p X .

Theorem
Let X be an NP-complete problem. If we find a polynomial time algorithm
for X , then P = NP .

30 / 39

Polynomial time reductions/transformations

Theorem
Let X be an NP-complete problem. If we find a polynomial time algorithm
for X , then P = NP .

Proof
Let A be a polytime algorithm for X . We have to show: NP ✓ P . Let Y be any
problem in NP . We will now give a polytime algorithm for Y . Let I be an
instance of Y . Since X is NP-complete, there is an algorithm B which transforms
any instance I of Y into an instance J of X in polynomial time, say in pB(|I |). In
particular this implies |J|  pB(|I |). The algorithm A for X solves J in time
pA(|J|)  pA(pB(|I |)) (since all parameters are positive). Thus, we have an
algorithm C = A � B (B followed by A) for Y , which gives an answer to instance
I in time at most pC (|I |) := pB(|I |) + pA(pB(|I |)), which, being a sum and
composition of polynomials, is a polynomial in |I |.

31 / 39

Is your problem NP-complete?

So if you have a computational problem, and you think it might be
NP-complete, then

• Find it in the Garey-Johnson, or some other compendium of
NP-complete/NP-hard problems, or

• prove that it is NP-complete.
This is far beyond the scope of this course . . .
You will learn how to do this in an advanced course on
algorithms/complexity.

32 / 39

Recap

• NP: problems which are polynomial-time checkable
(for YES-instances, a certificate exists which can be verified in
polynomial time)

• polynomial time reduction/transformation, X p Y , means: instances
of X can be transformed to instances of Y in polynomial time

• NP-complete problems: problems in NP to which all problems in NP
can be polytime reduced

• NP-hard problems: like NP-complete but not necessarily in NP

• An e�cient (=polytime) algorithm for an NP-complete or NP-hard
problem would imply: P=NP, which nobody believes is true

• Therefore, no e�cient algorithm can exist for these problems (we all
believe)

33 / 39

Why do we believe that P 6= NP?

• Many, many important real-life problems are NP-complete or
NP-hard.

• Finding an e�cient algorithm for just one of these would prove
P = NP .

• Much much work has gone into finding e�cient algorithms for these.

• By some of the best mathematicians and computer scientists on earth.

• No one has been able to find an e�cient algorithm for any one of
these problems so far.

34 / 39

Why do we believe that P 6= NP?

. . . by some of the best mathematicians and computer scientists on earth . . .

35 / 39

What to do next?

If we find that our computational problem is NP-complete or NP-hard,
then what can we do?

• despair/give up

• Run an exhaustive search algorithm – This is often possible for small
instances, often combined with specific tricks.

• Verify that your instances are really general. Often, the general case
is NP-complete, but many special cases are not!
E.g. the SBH-sequencing problem is not NP-complete: otherwise we
could not have found a better formulation (Euler cycles in de Bruijn
graphs) which is polynomially solvable!

(continued on next page)

36 / 39

What to do next?

(continued from previous page)

• Devise heuristics: algorithms that work well in practice but without
guaranteeing the quality of the solution.

• Polynomial time approximation algorithms: Algorithms that do not
guarantee the optimal solution, but a solution which approximates the
optimum. E.g. the Greedy Algorithm for SCS guarantees a solution
which is at most 4 times longer than the optimum.

• and, and, and . . .

37 / 39

Summary

• There are certain problems for which no e�cient algorithms exist
(very, very, very, very probably)

• These are called NP-complete (decision problems) or NP-hard
(optimization problems)

• Many real-life problems, also in computational biology/bioinformatics,
are NP-complete/NP-hard

• There are ways of dealing with this (see previous list)

38 / 39

Summary

Merry Christmas!

39 / 39

