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Shotgun sequencing of the human genome

From the DNA molecules (input of experiment) we want to get the
sequence of the nucleotides (desired output).

...AACAGTACCATGCTAGGTCAATCGA...

...TTGTCATGGTACGATCCAGTTAGCT...

These slides are mainly based on the Setubal-Meidanis book, chapter 4.
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Recall some molecular biology

5’ ...AACAGTACCATGCTAGGTCAATCGA...3’

3’ ...TTGTCATGGTACGATCCAGTTAGCT...5’

• 4 characters: A C T G (bases, nucleotides)

• double stranded

• A - T and C - G complementary (Watson-Crick pairs)

• length measured in bp (base pairs)

• orientation (read from 5’ to 3’ end)

• reverse complementary: (ACCTG)rc = CAGGT
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Sanger sequencing technology

image source: Wikimedia commons

DNA sequences of length 300-1000 bp are sequenced via

• DNA amplification using PCR or vectors

• division of sample into 4 di↵erent sub-samples

• chain-termination using modified nucleotides (di↵erent one for each reaction)

• radioactive or fluorescent labeling

• gel electrophoresis

See Wikipedia article on ”Sanger sequencing” or Setubal-Meidanis 1.5.2 and 1.6.
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Shotgun sequencing

Typical DNA molecules are several 100 000 bp long, but only sequences of
a few hundred (⇠ 300� 1000) bp can be sequenced. Solution: We make
many identical copies, break them up in random places (“shotgun
method”) and sequence these shorter fragments.

4 
 

Shotgun sequencing 

Problem:   typical DNA-molecules several 100´000 bp‘s long, but 
only pieces of length 200-700 can be sequenced (Sanger) 

Solution:   use shotgun method 

many   
identical 
copies 
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The fragment assembly problem

Input:

Many short sequences/strings1 (the fragments).

5 
 

Shotgun sequencing (2) 

Goal:   Reconstruct original string 

Goal:

Reconstruct original string (the target string).

1Recall that string = sequence, but substring 6= subsequence.
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An example

Given the four input strings on the left, one possible way of assembling
them is shown on the right. This is called a layout (= a multiple
alignment of the fragments).

ACCGT

CGTGC

TTAC

TACCGT

--ACCGT--

----CGTGC

TTAC-----

-TACCGT--

TTACCGTGC

The sequence under the line (in blue) is called a consensus sequence. We’ll
see later why.
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A di↵erent example

Here are two di↵erent consensus sequences for the same set of input
strings.

TACC

ACTAC

CGGACT

ACGGA

TACC----------

------ACTAC---

---CGGACT-----

---------ACGGA

TACCGGACTACGGA

------TACC

----ACTAC-

-CGGACT---

ACGGA-----

ACGGACTACC

1. Which solution is better?

) models

2. How can we find all solutions?

) algorithms
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Complications

First we look at some complications:

• base call errors,

• chimeras and contamination,

• unknown orientation,

• repeats, and

• lack of coverage.
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Complications 1: Base call errors 1

Sequencing errors (so-called base call errors) can be of 3 types:
substitution, insertion, or deletion of a single base.

ACCGT

CGTGC

TTAC

TGCCGT

--ACCGT--

----CGTGC

TTAC-----

-TGCCGT--

TTACCGTGC

A substitution (of an A by a G) occurred in the last sequence. Majority
vote will still produce the correct consensus sequence.

Majority vote: For every column, put that nucleotide which appears in the

majority (absolute or simple) of the rows in the layout.
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Complications 1: Base call errors 2

Sequencing errors (so-called base call errors) can be of 3 types:
substitution, insertion, or deletion of a single base.

ACCGT

CAGTGC

TTAC

TACCGT

--ACC-GT--

----CAGTGC

TTAC-----

-TACC-GT--

TTACC-GTGC

An insertion (of an A) occurred in the second sequence. Majority vote will
still produce the correct consensus sequence (- in the consensus sequence
will be removed).
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Complications 1: Base call errors 3

Sequencing errors (so-called base call errors) can be of 3 types:
substitution, insertion, or deletion of a single base.

ACCGT

CGTGC

TTAC

TACGT deletion of a C

--ACCGT--

----CGTGC

TTAC-----

-TAC-GT--

TTACCGTGC

A deletion (of a C) occurred in the last sequence. Majority vote will still
produce the correct consensus sequence (‘-’ in the consensus sequence will
be removed).
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Complications 2: Chimeras and contamination

Chimeras: Two sequences stick together at the 50 resp. 30 end, during the
lab process.

Contamination: DNA of the vector, or of the human handling the samples,
ends up in the input.

An example for a chimera:
ACCGT

CGTGC

TTAC

TACCGT

TTATGC

--ACCGT--

----CGTGC

TTAC-----

-TACCGT--

?????????

TTACCGTGC

TTA TGC

Note: Layout/consensus sequence/majority voting cannot deal with
chimeras or contamination.
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Complications 3: Unknown orientation

Any of the input sequences could be a substring of one strand or the
other. Since we have decided for one of the strands which we are trying to
reconstruct, if the input sequence is a substring of the other strand, then
its reverse complement will be a substring of our strand.

CACGT

ACGT

ACTACG

GTACT

ACTGA

CTGA

CACGT--------

-ACGT--------

--CGTAGT----- rc
-----AGTAC--- rc
--------ACTGA

---------CTGA

CACGTAGTACTGA

There are roughly 2n many possibilities if we have n input strings.
(In actual fact, less: Why? How many distinct possibilities are there?)
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Complications 4: Repeats

It is known that the genome has many repeats: Regions (substrings) which
occur more than once. If these are longer than the fragments, then they
often lead to ambiguities: It is impossible to decide, based on the input,
which is the correct target string, even if we have error-free input strings
and an unlimited quantity of them.
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Complications 4: Repeats on same strand

The repeated region X is too long; therefore, no fragment covers it
completely. The two consensus sequences AXBXCXD or AXCXBXD are
equally possible.
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Complications 4: Repeats on opposite strands

(inverted repeats)

Repeats on opposite strands lead to inverted repeats on the same strand:
of the form AXB(X )rcC , where (X )rc is the reverse complement of X . We
cannot distinguish between the two possible consensus sequences
AXB(X )rcC and AX (B)rc(X )rcC (below, the region B is marked in
green).

----TCGCG--------

-------CGAAGA----

ATACTCGCGAAGAGTCC

--------CGCGA----

----TCTTCG-------

ATACTCTTCGCGAGTCC
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Complications 5: Lack of coverage

GTACC----------

GTA-------------

--ACC----------

-------ACTAC---

-------ACTA----

----------ACGGA

GTACCGGACTACGGA

The two Gs in positions 6 and 7 are not covered by any fragment, so we
have no information about this stretch. Now the best we can hope for is a
good layout for each of the well covered regions, called contigs (see later).
One way of measuring the quality of a layout is the minimum coverage;
another (more common) the mean coverage, taken over all positions of the
consensus string.
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Quality measures 1: Minimum and mean coverage

TACC----------

------ACTAC---

---CGGACT-----

---------ACGGA

TACCGGACTACGGA

------TACC

----ACTAC-

-CGGACT---

ACGGA-----

ACGGACTACC

Minimum cov. = 1 Minimum cov. = 1
mean cov.: 20

14

= 1.42 mean cov.: 18

10

= 1.8

19 / 32

Quality measures 2: Linkage

Definition

An overlap of two strings s, t is a string u s.t. u is prefix of s and su�x of
t, or u is prefix of t and su�x of s. E.g. the strings ACGCG and GCGTTAC

have three non-empty overlaps:

GCG, AC, and G.

Given a layout, the linkage is the minimum length of an overlap in the
layout which is not contained in any other overlap in the layout. A
t-contig is a layout with linkage t.

TACC----------

---CGGACT-----

------ACTAC---

---------ACGGA

TACCGGACTACGGA

------TACC

----ACTAC-

-CGGACT---

ACGGA-----

ACGGACTACC

-------ACC

----ACTAC-

ACGGA-----

--GGAC----

ACGGACTACC

a 1-contig a 3-contig a 2-contig
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Quality measures 2: Linkage

Finally, we say that a collection F admits a t-contig if there is a layout
which, for every f 2 F , uses either f or f rc , and which is a t-contig.

E.g. the collection F = {TCAT, GAA} admits a 2-contig but not a 3-contig:

ATGA-

--GAA

ATGAA
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Quality measures 3: Length of consensus sequence

Finally, an often used measure is: the shorter the consensus sequence, the
better.

TACC----------

------ACTAC---

---CGGACT-----

---------ACGGA

TACCGGACTACGGA

------TACC

----ACTAC-

-CGGACT---

ACGGA-----

ACGGACTACC
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Models 1: Shortest Common Superstring

The simplest model is:

Shortest Common Superstring (SCS)

Input: A collection F of strings.
Output: A shortest possible string S s.t. for every f 2 F , S is a
superstring of f .

N.B.

The problem is well-defined because there always exists some superstring.
(Which?)
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Models 1: Shortest Common Superstring

Example for SCS

F = {ACT, CTA, AGT}. Then S = ACTAGT is the (unique) shortest common
superstring for F .

Proof: 1. Clearly, S is a superstring for all 3 strings. 2. Now any string that has

both u = ACT and v = AGT as substring must have length at least 6, because

they have no overlap. But if length is 6, then the string is either uv or vu. Since

also CTA is a substring, the string must be uv = S .
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Models 1: Shortest Common Superstring

The SCS model assumes no errors and known orientation. Moreover, it
does not account for repeats in the target string: If there are long repeats,
then the target string is not shortest possible, i.e. an algorithm for SCS
will not produce the correct result.

The dashed lines show fragments which are contained in the repeat X .
These all get aligned to the one (unique) copy of X . So the middle part of
the second occurrence of X does not appear in the consensus sequence.
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Models 1: Shortest Common Superstring

N.B.:

SCS is NP-hard but approximation algorithms exist.

NP-hard problems

We will learn exact meaning later. For now, it means ”very di�cult problem; we
cannot hope to find exact solutions e�ciently, i.e. fast.” However, in this case,
since problem is approximable: We can hope to find approximate solutions
e�ciently, i.e. not shortest superstring, but maybe we can find a superstring
which is not much longer than a shortest superstring would be.
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Models 2: Reconstruction

Now we want to account also for base call errors. Recall the edit distance
between two strings:

Edit distance

d(u, v) = minimum number of edit operations which turn u into v ,

where edit operations can be substitutions, deletions, or insertions of bases.

Example

d(ACTCT, GACCT) = 2, because with one insertion and one deletion we can
turn the first string into the second, and clearly there is no one operation
that will do that. (In general, how do we compute d(u, v)?)
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Models 2: Reconstruction

Substring edit distance

The same but now u has to be turned into a substring of v :

ds(u, v) = min{d(u, v 0) : v 0 substring of v}.

Example

-----GC-GATAG----

CAGTCGCTGATCGTACG

ds(GCGATAG, CAGTCGCTGATCGTACG) = 2: one insertion, one substitution.
(We have not proved that this is minimum, you just have to believe it.)
Note that this distance is not symmetric! (Upper bound on ds(u, v)?)

N.B. This is one type of semiglobal alignment, where gaps at beginning
and end of second string are not penalized.
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Models 2: Reconstruction

Reconstruction

Input: A collection F of strings and an error tolerance ✏, 0  ✏  1.
Output: A shortest possible string S s.t. for every f 2 F ,

min(ds(f , S), ds(f
rc , S))  ✏|f |,

where |f | is the length of f .

So we want to align either f or its reverse complement to S . And if
✏ = 0.05, then we are allowed 5 errors per 100 bp.
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Models 2: Reconstruction

The Reconstruction model admits errors and orientation, but does not
allow for chimeras, lack of coverage or repeats.

Reconstruction is NP-hard.
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Models 3: Multicontig

Taking care of linkage

We want to partition F in the minimum number of t-contigs.

Example: F = {TAATG, TGTAA, GTAC}.

t = 3 :
--TAATG GTAC

TGTAA--

TGTAATG GTAC

t = 2 :
TAATG--- GTAC

---TGTAA

TAATGTAA GTAC

t = 1 :

TGTAA-----

--TAATG---

------GTAC

TGTAATGTAC

So for t = 3, 2, we get two contigs, for t = 1, we get just one contig.
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Models 3: Multicontig

Now add errors to the model:

✏-consensus
Every f must have d(f , u)  ✏|f |, where u is the substring to which it has
been aligned in the given layout.

Example

TGGAA-----

--TAATG---

------GTAA

TGTAATGTAC

This is a 0.25-consensus (and not 0.2-consensus), because the last string,
even though it could have been aligned with 0 errors, has distance 1 to the
substring of the consensus to which it has been aligned in this layout.
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Models 3: Multicontig

Multicontig

Input: A collection F of strings, and integer t � 0 and an error tolerance
✏, 0  ✏  1.
Output: A partition of F in the minimum number of subcollections Ci ,
1  i  k , s.t. every subcollection admits a t-contig with an ✏-consensus.

Multicontig model admits errors, orientation, lack of coverage, and can
partially deal with repeats.

Multicontig is NP-hard.
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