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These slides mainly based on Compeau, Pevzner, Tesler: How to apply de Bruijn
graphs to genome assembly, Nature Biotechnology 29 (11).

Sanger sequencing vs. short read sequencing

NGS
Next generation sequencing technologies (Illumina, 454, SOLiD, . . . )
generate a much larger number of reads

• high-throughput: fast acquisition, low cost

• lower quality (more errors)

• short reads (Illumina: typically 60-100 bp)

• much higher number of reads

While overlap graph approach (with many additional details and
modifications!) worked for Sanger type sequences, it no longer works for
NGS data. Reason: Input too large, no e�cient (= polynomial time in
input size) algorithms known, since all problem variants NP-hard.

2 / 17

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in de Bruijn graph approach instead of finding
heaviest Hamiltonian cycle/path in overlap graph.

Finding an Euler cycle (or Euler path) can be solved in polynomial time.

But:
We have to find a way of modelling our problem in the right way.
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Modelling our problem with de Bruijn graphs

N.B.
For simplicity, for now our sequence to be reconstructed is assumed to be
circular. E.g. bacterial genomes are circular.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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String can be read as: ATGGCGTGCA,

TGGCGTGCAA, GGCGTGCAAT, ...
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Definition of de Bruijn graphs

Let ⌃ be our alphabet.
(E.g. ⌃ = {A, C, G, T} or ⌃ = {0, 1} or ⌃ = {a, b, c})

Definition
A digraph G = (V ,E ) is called a de Bruijn graph of order k if V ✓ ⌃k�1

and for all u, v 2 V : if (u, v) 2 E then there exists a word w 2 ⌃k s.t. u is
the (k � 1)-length prefix of w and v is the (k � 1)-length su�x of w .

Example
u = GCA, v = CAA,w = GCAA.
Note that this graph can have loops, e.g. if u = AAA, then (u, u) 2 E is
possible.

N.B.
Named after Nicolaas de Bruijn, who introduced a related class of graphs
in 1946, for a di↵erent problem.
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Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F .

Example
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:

AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG.
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Modelling our problem with de Bruijn graphs

Now from the k-mers, we generate the (k � 1)-length prefixes and su�xes:
AA, AT, CA, CG, GC, GG, GT, TG. These are the vertices. The edges
are the k-mers.

• F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3

• edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

• vertices: AA, AT, CA, CG, GC, GG, GT, TG
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Modelling our problem with de Bruijn graphs
• edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

(remember to only put an edge is the k-mer is present!)
• vertices: AA, AT, CA, CG, GC, GG, GT, TG

The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA
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Modelling our problem with de Bruijn graphs
• edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

(remember to only put an edge is the k-mer is present!)
• vertices: AA, AT, CA, CG, GC, GG, GT, TG
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA
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Comparison to other models

Compare to modelling the same problem with overlap graphs:
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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Note that not all non-zero weight edges are included in the figure. The numbers

on the edges give a Hamiltonian cycle: ATGGCGTGCA.

9 / 17

Comparison to other models
Compare to modelling the same problem with overlap graphs using k-mers
as nodes:

• F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3
• k-mers are nodes: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
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Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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Put an edge if the overlap equals k � 1. The numbers on the edges give a

Hamiltonian cycle: ATGGCGTGCA.
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Practical strategies for applying de Bruijn graphs: all
k-mers

Generating nearly all k-mers
In reality, only a small fraction of all 100-mers (e.g.) are really sampled.
Solution: Take shorter k than readlength. E.g. if reads have length approx.
100, then taking k = 55 will yield nearly all k-mers of the genome.

Ex.
In the example, not all 7-mers are present as reads, but all 3-mers are:

• genome: ATGGCGTGCA

• 7-mers: ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG

• 3-mers: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
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Practical strategies for applying de Bruijn graphs: errors

Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This
can be detected and handled, using multiplicity of k-mers (multigraphs!)

Supplementary Figures 
 

Why are de Bruijn graphs useful for genome assembly? 
 

Phillip E. C. Compeau, Pavel A. Pevzner & Glenn Tesler 
 

 
 

 
 

Supplementary Figure 1. De Bruijn graph from reads with sequencing errors. (a) A de 
Bruijn graph E on our set of reads with k = 4.  Finding an Eulerian cycle is already a 
straightforward task, but for this value of k, it is trivial.  (b) If TGGAGTG is incorrectly 
sequenced as a sixth read (in addition to the correct TGGCGTG read), then the result is a bulge in 
the de Brujin graph, which complicates assembly.  (c) An illustration of a de Bruijn graph E with 
many bulges.  The process of bulge removal should leave only the red edges remaining, yielding 
an Eulerian path in the resulting graph. 
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AATG

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

GGA GAG AGT

TGGA

GGAG GAGT

AGTG

a

b

c

Nature Biotechnology: doi:10.1038/nbt.2023
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Practical strategies for applying de Bruijn graphs: errors
Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This can be

detected and handled, via multiplicity of k-mers (multigraphs!) or of (k � 1)-mers

Example
● Simplification

E.g. the software Velvet (Zerbino and Birney, 2008) uses detection and

elimination of bubbles and tips.
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Practical strategies for applying de Bruijn graphs: repeats

 
 
Supplementary Figure 2. De Bruijn graph of a genome with repeats. The graph E for k-mers 
with different multiplicities: each of the four 3-mers TGC, GCG, CGT, and GTG has multiplicity 
2, and each of the six 3-mers ATG, TGG, GGC, GCA, CAA, and AAT has multiplicity 1.  An 
Eulerian cycle is formed by following the numbered edges in the order 1,2,…,14: ATG, TGC, 
GCG, CGT, GTG, TGC, GCG, CGT, GTG, TGG, GGC, GCA, CAA, AAT. This Eulerian cycle 
spells the cyclic superstring ATGCGTGCGTGGCA. 
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GGC
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GGC
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ATGCGGTGCGTGGCAATGGenome:
ATG

Nature Biotechnology: doi:10.1038/nbt.2023

Repeats can be detected using multiplicity of k-mers (edges). Again, using

multigraphs (edges have multiplicities).
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Eulerian cycles in multigraphs

Theorem
A connected multigraph is Eulerian (has an Eulerian cycle) if and only if
every vertex is balanced.

Now indegree = sum of multiplicities of incoming edges (= number of
incoming edges counted with their multiplicities), outdegree defined
similarly.
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How to apply de Bruijn graphs to genome 
assembly
Phillip E C Compeau, Pavel A Pevzner & Glenn Tesler

A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous 
genome from billions of short sequencing reads into a tractable computational problem.

The development of algorithmic ideas 
for next-generation sequencing can be 

traced back 300 years to the Prussian city of 
Königsberg (present-day Kaliningrad, Russia), 
where seven bridges joined the four parts of the 
city located on opposing banks of the Pregel 
River and two river islands (Fig. 1a). At the 
time, Königsberg’s residents enjoyed  strolling 
through their city, and they  wondered if every 
part of the city could be visited by  walking 
across each of the seven bridges exactly once 
and returning to one’s starting  location. 
The solution came in 1735, when the great 
 mathematician Leonhard Euler1 made a 
 conceptual breakthrough that would solve 
this ‘Bridges of Königsberg problem’. Euler’s 
first insight was to represent each landmass as 
a point (called a node) and each bridge as a 
line segment (called an edge)  connecting the 
appropriate two points. This creates a graph—a 
network of nodes connected by edges (Fig. 1b). 
By describing a procedure for determining 
whether an arbitrary graph  contains a path 
that visits every edge exactly once and returns 
to where it started, Euler not only resolved 
the Bridges of Königsberg problem but also 
 effectively launched the entire branch of 
 mathematics known today as graph theory2.

Since Euler’s original description, the use 
of graph theory has turned out to have many  

additional practical applications, most of 
which have greater scientific importance 
than the development of walking itineraries.  
Specifically, Euler’s ideas were subsequently 
adapted by Dutch mathematician Nicolaas de 
Bruijn to find a cyclic sequence of letters taken 
from a given alphabet for which every possible 
word of a certain length (k) appears as a string 
of consecutive characters in the cyclic sequence 
exactly once (Box 1 and Fig. 2). Application 
of the de Bruijn graph has also proven invalu-
able in the field of molecular biology where 
researchers are faced with the problem of 
assembling billions of short sequencing reads 
into a single genome. In the following article, 
we describe the problems faced when con-
structing a genome and how the de Bruijn 
graph approach can be applied to assemble 
short-read sequences.

Problems with alignment-based assembly
To illustrate why graphs are useful for 
genome assembly, consider a simple exam-
ple with five very short reads (CGTGCAA, 
ATGGCGT, CAATGGC, GGCGTGC and 

TGCAATG) sequenced from a small circular 
genome, ATGGCGTGCA (Fig. 3a). Current  
next-generation sequencing methods produce 
reads that vary in length, but the most popular 
technology generates ~100-nucleotide reads. A 
straightforward method for assembling reads 
into longer contiguous sequences—and the 
one used for assembling the human genome3,4 
in 2001 as well as for all other projects based 
on Sanger sequencing—uses a graph in which 
each read is represented by a node and over-
lap between reads is represented by an arrow 
(called a ‘directed edge’) joining two reads. For 
instance, two nodes representing reads may 
be connected with a directed edge if the reads 
overlap by at least five nucleotides (Fig. 3b).

Visualizing an ant walking along the edges 
of this graph provides an aid for understand-
ing a broad class of algorithms used to derive 
insights from graphs. In the case of genome 
assembly, the ant’s path traces a series of 
overlapping reads, and thus represents a can-
didate assembly. Specifically, if the ant fol-
lows the path ATGGCGT A GGCGTGC A 
CGTGCAA A TGCAATG A CAATGGC A 

Figure 1 Bridges of Königsberg problem. (a) A map of old Königsberg, in which each area of the city is 
labeled with a different color point. (b) The Königsberg Bridge graph, formed by representing each of 
four land areas as a node and each of the city’s seven bridges as an edge.

a b

Recall the Bridges of Königsberg problem.
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Homework

• On page 8, is this the only Euler tour? If not, find the other circular
string(s) which might give a solution. Do they also yield a superstring
for the input fragments of length 7?

• Repeat the algorithm from p. 7-8 with k = 4. How many Euler tours
exist now?
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the computational problem of finding a 
Hamiltonian cycle belongs to a class of prob-
lems that are collectively called NP-Complete 
(see ref. 2 for further background). To this 
day, some of the world’s top computer scien-
tists have worked to find an efficient solution 
to any NP-Complete problem, with no suc-
cess. What makes their failure doubly frus-
trating is that no one has even been able to 
prove that NP-Complete problems are intrac-
table; efficient solutions to these problems 
may actually exist, but such solutions have 
not yet been discovered.

Scalable assembly with de Bruijn graphs
As noted in the previous section, finding a 
cycle that visits all nodes of a graph exactly 
once (called the Hamiltonian cycle problem) 
is a difficult computational problem; how-
ever, as we will soon see, finding a cycle that 
visits all edges of a graph exactly once is much 
easier. This algorithmic contrast has moti-
vated computer scientists to cast DNA frag-
ment assembly as such a problem. Instead of 
assigning each k-mer contained in some read 
to a node, we will now assign each such k-mer 
to an edge. This allows the construction of a 
‘de Bruijn graph’ as follows. First, form a node 
for every distinct prefix or suffix of a k-mer, 
meaning that a given sequence of length k–1  

k-mer to another using a directed edge if the 
suffix of the former equals the prefix of the 
latter—that is, if the two k-mers completely 
overlap except for one nucleotide at each end 
(Fig. 3c). Third, look for a Hamiltonian cycle, 
which represents a candidate genome because 
it visits each detected k-mer; moreover, that 
path will also have minimal length because 
a Hamiltonian cycle travels to each k-mer 
exactly once.

This method, however, is not as easy to 
implement as it might seem. Imagine attempt-
ing to create a similar graph for a single run 
of an Illumina (San Diego) sequencer that 
generates many reads. A million (106) reads 
will require a trillion (1012) pairwise align-
ments. A billion (109) reads necessitate a 
quintillion (1018) alignments. What’s more, 
there is no known efficient algorithm for 
finding a Hamiltonian cycle in a large graph 
with millions (let alone billions) of nodes. The 
Hamiltonian cycle approach5,6 was feasible for 
sequencing the first microbial genome7 in 1995 
and the human genome in 2001, as well as for 
all other projects based on Sanger sequenc-
ing. Even so, the computational burden of this 
approach was so large that most next-gener-
ation sequencing projects have abandoned it.

And here is where genome sequencing 
faces the limits of modern computer science: 

ATGGCGT, its walk induces a ‘Hamiltonian 
cycle’ in our graph, which is a path that  
travels to every node exactly once and ends at 
the starting node, meaning that each read will 
be included once in the assembly. The circular 
genome ATGGCGTGCA, which is computed 
by concatenating the first two nucleotides in 
each read in such a Hamiltonian cycle, con-
tains all five reads and thus reconstructs the 
original genome (although we may have to 
‘wrap around’ the genome, for example, to 
locate CAATGGC in ATGGCGTGCA).

Modern assemblers usually work with 
strings of a particular length k (k-mers), 
which are shorter than entire reads (see 
Box 2 for an explanation of why research-
ers prefer k-mers to reads). For example, a 
100-nucleotide read may be divided into 46 
overlapping 55-mers. The Hamiltonian cycle 
approach can be generalized to make use of 
k-mers by constructing a graph as follows. 
First, from a set of reads, make a node for 
every k-mer appearing as a consecutive sub-
string of one of these reads (e.g., in Fig. 3, 
ATG, TGG, GGC, GCG, CGT, GTG, TGC, 
GCA, CAA and AAT). Second, given a 
k-mer, define its ‘suffix’ as the string formed 
by all its nucleotides except the first one and 
its ‘prefix’ as the string formed by all of its 
nucleotides except the last one. Connect one 

Box 1  Origin of de Bruijn graphs

In 1946, the Dutch mathematician Nicolaas de Bruijn became 
interested in the ‘superstring problem’12: find a shortest circular 
‘superstring’ that contains all possible ‘substrings’ of length 
k (k-mers) over a given alphabet. There exist nk k-mers in an 
alphabet containing n symbols: for example, given the alphabet 
comprising A, T, G and C, there are 43 = 64 trinucleotides. If our 
alphabet is instead 0 and 1, then all possible 3-mers are simply 
given by all eight 3-digit binary numbers: 000, 001, 010, 011, 
100, 101, 110, 111. The circular superstring 0001110100 
not only contains all 3-mers but also is as short as possible, as 
it contains each 3-mer exactly once. But how can one construct 
such a superstring for all k-mers in the case of an arbitrary value 
of k and an arbitrary alphabet? De Bruijn answered this question 
by borrowing Euler’s solution of the Bridges of Königsberg problem.
Briefly, construct a graph B (the original graph called a de Bruijn 
graph) for which every possible (k – 1)-mer is assigned to a node; 
connect one (k – 1)-mer by a directed edge to a second (k – 1)-
mer if there is some k-mer whose prefix is the former and whose 
suffix is the latter (Fig. 2). Edges of the de Bruijn graph represent 
all possible k-mers, and thus an Eulerian cycle in B represents a 
shortest (cyclic) superstring that contains each k-mer exactly once. 
By checking that the indegree and outdegree of every node in B 
equals the size of the alphabet, we can verify that B contains an 
Eulerian cycle. In turn, we can construct an Eulerian cycle using 
Euler’s algorithm, therefore solving the superstring problem. It 
should now be apparent why the ‘de Bruijn graph’ construction described in the main text, which does not use all possible k-mers as edges 
but rather only those generated from our reads, is also named in honor of de Bruijn.
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Figure 2  De Bruijn graph. The de Bruijn graph B for k = 4 and a two-
character alphabet composed of the digits 0 and 1. This graph has an 
Eulerian cycle because each node has indegree and outdegree equal to 2. 
Following the blue numbered edges in order from 1 to 16 traces an 
Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 
1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000. Recording 
the first character (in boldface) of each edge label spells the cyclic 
superstring 0000110010111101.
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