
De Bruijn Graphs for DNA Sequencing (Part 2)

1

Course “Discrete Biological Models” (Modelli Biologici Discreti)

Zsuzsanna Lipták

Laurea Triennale in Bioinformatica

a.a. 2014/15, fall term

1

These slides mainly based on Compeau, Pevzner, Tesler: How to apply de Bruijn
graphs to genome assembly, Nature Biotechnology 29 (11).

Sanger sequencing vs. short read sequencing

NGS
Next generation sequencing technologies (Illumina, 454, SOLiD, . . .)
generate a much larger number of reads

• high-throughput: fast acquisition, low cost

• lower quality (more errors)

• short reads (Illumina: typically 60-100 bp)

• much higher number of reads

While overlap graph approach (with many additional details and
modifications!) worked for Sanger type sequences, it no longer works for
NGS data. Reason: Input too large, no e�cient (= polynomial time in
input size) algorithms known, since all problem variants NP-hard.

2 / 17

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in de Bruijn graph approach instead of finding
heaviest Hamiltonian cycle/path in overlap graph.

Finding an Euler cycle (or Euler path) can be solved in polynomial time.

But:
We have to find a way of modelling our problem in the right way.

3 / 17

Modelling our problem with de Bruijn graphs

N.B.
For simplicity, for now our sequence to be reconstructed is assumed to be
circular. E.g. bacterial genomes are circular.

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 11 NOVEMBER 2011 989

states that a connected directed graph has an
Eulerian cycle if and only if it is balanced. In
particular, Euler’s theorem implies that our
de Bruijn graph contains an Eulerian cycle as
long as we have located all k-mers present in
the genome. Indeed, in this case, for any node,
both its indegree and outdegree represent the
number of times the (k–1)-mer assigned to that
node occurs in the genome.

To see why Euler’s theorem must be true,
first note that a graph that contains an Eulerian
cycle is balanced because every time an ant
traversing an Eulerian cycle passes through a
particular vertex, it enters on one edge of the
cycle and exits on the next edge. This pairs up
all the edges touching each vertex, showing that
half the edges touching the vertex lead into it
and half lead out from it. It is a bit harder to see
the converse—that every connected balanced

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there

exists a path between every two nodes (called
connected graphs). He proved that a connected
graph with undirected edges contains an
Eulerian cycle exactly when every node in the
graph has an even number of edges touching
it. For the Königsberg Bridge graph (Fig. 1b),
this is not the case because each of the four
nodes has an odd number of edges touching
it and so the desired stroll through the city
does not exist.

The case of directed graphs (that is, graphs
with directed edges) is similar. For any node
in a directed graph, define its indegree as the
 number of edges leading into it and its outdegree
as the number of edges leaving it. A graph in
which indegrees are equal to outdegrees for
all nodes is called ‘balanced’. Euler’s theorem

(e.g., AT, TG, GG, GC, CG, GT, CA and AA)
can appear only once as a node of the graph.
Then, connect node x to node y with a directed
edge if some k-mer (e.g., ATG) has prefix x (e.g.,
AT) and suffix y (e.g., TG), and label the edge
with this k-mer (Fig. 3d; in Box 3, we describe
how this approach was originally discussed in
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of
the graph (as before), it now attempts to visit
every edge of the graph exactly once. Sound
familiar? This is exactly the kind of path that
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also
spells out a candidate genome; for each edge
that the ant traverses, one records the first

Figure 3 Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix.
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the
computationally expensive task of finding a Hamiltonian cycle.

G

G

A

T

C

A T

G

C
G

CGTGCAA

ATGGCGT

CAATGGCGGCGTGC

TGCAATG

ATGGCGT

GGCGTGC

CGTGCAA

TGCAATG

CAATGGC

ATGGCGTGCAATGGCGT
ATGGCGT

Short-read
sequencing

Genome:

Vertices are k-mers
Edges are pairwise alignments

Vertices are (k 1)-mers
Edges are k-mers

a

c
1

2

3

4

56

7

8

9

10

d
AT

TG

GG

GC

CG

GT

CA

AA

3

45

6 7

8

1

29

10

ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT
ATG

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG
ATGGCGTGCAATG

b

Genome:
Hamiltonian cycle

Visit each vertex once
(harder to solve)

Eulerian cycle
Visit each edge once

(easier to solve)

1

2

3

4

5

GGC

TGG

ATG
AAT

CAA

GCA

TGC
GTG

GCG

CGT

k-mers from edgesk-mers from vertices

PR IMER

String can be read as: ATGGCGTGCA,

TGGCGTGCAA, GGCGTGCAAT, ...

4 / 17

Definition of de Bruijn graphs

Let ⌃ be our alphabet.
(E.g. ⌃ = {A, C, G, T} or ⌃ = {0, 1} or ⌃ = {a, b, c})

Definition
A digraph G = (V ,E) is called a de Bruijn graph of order k if V ✓ ⌃k�1

and for all u, v 2 V : if (u, v) 2 E then there exists a word w 2 ⌃k s.t. u is
the (k � 1)-length prefix of w and v is the (k � 1)-length su�x of w .

Example
u = GCA, v = CAA,w = GCAA.
Note that this graph can have loops, e.g. if u = AAA, then (u, u) 2 E is
possible.

N.B.
Named after Nicolaas de Bruijn, who introduced a related class of graphs
in 1946, for a di↵erent problem.

5 / 17

Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F .

Example
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:

AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG.

6 / 17

Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F .

Example
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:
AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG.

6 / 17

Modelling our problem with de Bruijn graphs

Now from the k-mers, we generate the (k � 1)-length prefixes and su�xes:
AA, AT, CA, CG, GC, GG, GT, TG. These are the vertices. The edges
are the k-mers.

• F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3

• edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

• vertices: AA, AT, CA, CG, GC, GG, GT, TG

7 / 17

Modelling our problem with de Bruijn graphs
• edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

(remember to only put an edge is the k-mer is present!)
• vertices: AA, AT, CA, CG, GC, GG, GT, TG

The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA

8 / 17

Modelling our problem with de Bruijn graphs
• edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

(remember to only put an edge is the k-mer is present!)
• vertices: AA, AT, CA, CG, GC, GG, GT, TG

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 11 NOVEMBER 2011 989

states that a connected directed graph has an
Eulerian cycle if and only if it is balanced. In
particular, Euler’s theorem implies that our
de Bruijn graph contains an Eulerian cycle as
long as we have located all k-mers present in
the genome. Indeed, in this case, for any node,
both its indegree and outdegree represent the
number of times the (k–1)-mer assigned to that
node occurs in the genome.

To see why Euler’s theorem must be true,
first note that a graph that contains an Eulerian
cycle is balanced because every time an ant
traversing an Eulerian cycle passes through a
particular vertex, it enters on one edge of the
cycle and exits on the next edge. This pairs up
all the edges touching each vertex, showing that
half the edges touching the vertex lead into it
and half lead out from it. It is a bit harder to see
the converse—that every connected balanced

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there

exists a path between every two nodes (called
connected graphs). He proved that a connected
graph with undirected edges contains an
Eulerian cycle exactly when every node in the
graph has an even number of edges touching
it. For the Königsberg Bridge graph (Fig. 1b),
this is not the case because each of the four
nodes has an odd number of edges touching
it and so the desired stroll through the city
does not exist.

The case of directed graphs (that is, graphs
with directed edges) is similar. For any node
in a directed graph, define its indegree as the
 number of edges leading into it and its outdegree
as the number of edges leaving it. A graph in
which indegrees are equal to outdegrees for
all nodes is called ‘balanced’. Euler’s theorem

(e.g., AT, TG, GG, GC, CG, GT, CA and AA)
can appear only once as a node of the graph.
Then, connect node x to node y with a directed
edge if some k-mer (e.g., ATG) has prefix x (e.g.,
AT) and suffix y (e.g., TG), and label the edge
with this k-mer (Fig. 3d; in Box 3, we describe
how this approach was originally discussed in
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of
the graph (as before), it now attempts to visit
every edge of the graph exactly once. Sound
familiar? This is exactly the kind of path that
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also
spells out a candidate genome; for each edge
that the ant traverses, one records the first

Figure 3 Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix.
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the
computationally expensive task of finding a Hamiltonian cycle.

G

G

A

T

C

A T

G

C
G

CGTGCAA

ATGGCGT

CAATGGCGGCGTGC

TGCAATG

ATGGCGT

GGCGTGC

CGTGCAA

TGCAATG

CAATGGC

ATGGCGTGCAATGGCGT
ATGGCGT

Short-read
sequencing

Genome:

Vertices are k-mers
Edges are pairwise alignments

Vertices are (k 1)-mers
Edges are k-mers

a

c
1

2

3

4

56

7

8

9

10

d
AT

TG

GG

GC

CG

GT

CA

AA

3

45

6 7

8

1

29

10

ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT
ATG

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG
ATGGCGTGCAATG

b

Genome:
Hamiltonian cycle

Visit each vertex once
(harder to solve)

Eulerian cycle
Visit each edge once

(easier to solve)

1

2

3

4

5

GGC

TGG

ATG
AAT

CAA

GCA

TGC
GTG

GCG

CGT

k-mers from edgesk-mers from vertices

PR IMER

The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA
8 / 17

Comparison to other models

Compare to modelling the same problem with overlap graphs:
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 11 NOVEMBER 2011 989

states that a connected directed graph has an
Eulerian cycle if and only if it is balanced. In
particular, Euler’s theorem implies that our
de Bruijn graph contains an Eulerian cycle as
long as we have located all k-mers present in
the genome. Indeed, in this case, for any node,
both its indegree and outdegree represent the
number of times the (k–1)-mer assigned to that
node occurs in the genome.

To see why Euler’s theorem must be true,
first note that a graph that contains an Eulerian
cycle is balanced because every time an ant
traversing an Eulerian cycle passes through a
particular vertex, it enters on one edge of the
cycle and exits on the next edge. This pairs up
all the edges touching each vertex, showing that
half the edges touching the vertex lead into it
and half lead out from it. It is a bit harder to see
the converse—that every connected balanced

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there

exists a path between every two nodes (called
connected graphs). He proved that a connected
graph with undirected edges contains an
Eulerian cycle exactly when every node in the
graph has an even number of edges touching
it. For the Königsberg Bridge graph (Fig. 1b),
this is not the case because each of the four
nodes has an odd number of edges touching
it and so the desired stroll through the city
does not exist.

The case of directed graphs (that is, graphs
with directed edges) is similar. For any node
in a directed graph, define its indegree as the
 number of edges leading into it and its outdegree
as the number of edges leaving it. A graph in
which indegrees are equal to outdegrees for
all nodes is called ‘balanced’. Euler’s theorem

(e.g., AT, TG, GG, GC, CG, GT, CA and AA)
can appear only once as a node of the graph.
Then, connect node x to node y with a directed
edge if some k-mer (e.g., ATG) has prefix x (e.g.,
AT) and suffix y (e.g., TG), and label the edge
with this k-mer (Fig. 3d; in Box 3, we describe
how this approach was originally discussed in
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of
the graph (as before), it now attempts to visit
every edge of the graph exactly once. Sound
familiar? This is exactly the kind of path that
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also
spells out a candidate genome; for each edge
that the ant traverses, one records the first

Figure 3 Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix.
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the
computationally expensive task of finding a Hamiltonian cycle.

G

G

A

T

C

A T

G

C
G

CGTGCAA

ATGGCGT

CAATGGCGGCGTGC

TGCAATG

ATGGCGT

GGCGTGC

CGTGCAA

TGCAATG

CAATGGC

ATGGCGTGCAATGGCGT
ATGGCGT

Short-read
sequencing

Genome:

Vertices are k-mers
Edges are pairwise alignments

Vertices are (k 1)-mers
Edges are k-mers

a

c
1

2

3

4

56

7

8

9

10

d
AT

TG

GG

GC

CG

GT

CA

AA

3

45

6 7

8

1

29

10

ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT
ATG

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG
ATGGCGTGCAATG

b

Genome:
Hamiltonian cycle

Visit each vertex once
(harder to solve)

Eulerian cycle
Visit each edge once

(easier to solve)

1

2

3

4

5

GGC

TGG

ATG
AAT

CAA

GCA

TGC
GTG

GCG

CGT

k-mers from edgesk-mers from vertices

PR IMER

Note that not all non-zero weight edges are included in the figure. The numbers

on the edges give a Hamiltonian cycle: ATGGCGTGCA.

9 / 17

Comparison to other models
Compare to modelling the same problem with overlap graphs using k-mers
as nodes:

• F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3
• k-mers are nodes: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 11 NOVEMBER 2011 989

states that a connected directed graph has an
Eulerian cycle if and only if it is balanced. In
particular, Euler’s theorem implies that our
de Bruijn graph contains an Eulerian cycle as
long as we have located all k-mers present in
the genome. Indeed, in this case, for any node,
both its indegree and outdegree represent the
number of times the (k–1)-mer assigned to that
node occurs in the genome.

To see why Euler’s theorem must be true,
first note that a graph that contains an Eulerian
cycle is balanced because every time an ant
traversing an Eulerian cycle passes through a
particular vertex, it enters on one edge of the
cycle and exits on the next edge. This pairs up
all the edges touching each vertex, showing that
half the edges touching the vertex lead into it
and half lead out from it. It is a bit harder to see
the converse—that every connected balanced

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there

exists a path between every two nodes (called
connected graphs). He proved that a connected
graph with undirected edges contains an
Eulerian cycle exactly when every node in the
graph has an even number of edges touching
it. For the Königsberg Bridge graph (Fig. 1b),
this is not the case because each of the four
nodes has an odd number of edges touching
it and so the desired stroll through the city
does not exist.

The case of directed graphs (that is, graphs
with directed edges) is similar. For any node
in a directed graph, define its indegree as the
 number of edges leading into it and its outdegree
as the number of edges leaving it. A graph in
which indegrees are equal to outdegrees for
all nodes is called ‘balanced’. Euler’s theorem

(e.g., AT, TG, GG, GC, CG, GT, CA and AA)
can appear only once as a node of the graph.
Then, connect node x to node y with a directed
edge if some k-mer (e.g., ATG) has prefix x (e.g.,
AT) and suffix y (e.g., TG), and label the edge
with this k-mer (Fig. 3d; in Box 3, we describe
how this approach was originally discussed in
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of
the graph (as before), it now attempts to visit
every edge of the graph exactly once. Sound
familiar? This is exactly the kind of path that
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also
spells out a candidate genome; for each edge
that the ant traverses, one records the first

Figure 3 Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix.
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the
computationally expensive task of finding a Hamiltonian cycle.

G

G

A

T

C

A T

G

C
G

CGTGCAA

ATGGCGT

CAATGGCGGCGTGC

TGCAATG

ATGGCGT

GGCGTGC

CGTGCAA

TGCAATG

CAATGGC

ATGGCGTGCAATGGCGT
ATGGCGT

Short-read
sequencing

Genome:

Vertices are k-mers
Edges are pairwise alignments

Vertices are (k 1)-mers
Edges are k-mers

a

c
1

2

3

4

56

7

8

9

10

d
AT

TG

GG

GC

CG

GT

CA

AA

3

45

6 7

8

1

29

10

ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT
ATG

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG
ATGGCGTGCAATG

b

Genome:
Hamiltonian cycle

Visit each vertex once
(harder to solve)

Eulerian cycle
Visit each edge once

(easier to solve)

1

2

3

4

5

GGC

TGG

ATG
AAT

CAA

GCA

TGC
GTG

GCG

CGT

k-mers from edgesk-mers from vertices

PR IMER

Put an edge if the overlap equals k � 1. The numbers on the edges give a

Hamiltonian cycle: ATGGCGTGCA.
10 / 17

Practical strategies for applying de Bruijn graphs: all
k-mers

Generating nearly all k-mers
In reality, only a small fraction of all 100-mers (e.g.) are really sampled.
Solution: Take shorter k than readlength. E.g. if reads have length approx.
100, then taking k = 55 will yield nearly all k-mers of the genome.

Ex.
In the example, not all 7-mers are present as reads, but all 3-mers are:

• genome: ATGGCGTGCA

• 7-mers: ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG

• 3-mers: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

11 / 17

Practical strategies for applying de Bruijn graphs: errors

Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This
can be detected and handled, using multiplicity of k-mers (multigraphs!)

Supplementary Figures

Why are de Bruijn graphs useful for genome assembly?

Phillip E. C. Compeau, Pavel A. Pevzner & Glenn Tesler

Supplementary Figure 1. De Bruijn graph from reads with sequencing errors. (a) A de
Bruijn graph E on our set of reads with k = 4. Finding an Eulerian cycle is already a
straightforward task, but for this value of k, it is trivial. (b) If TGGAGTG is incorrectly
sequenced as a sixth read (in addition to the correct TGGCGTG read), then the result is a bulge in
the de Brujin graph, which complicates assembly. (c) An illustration of a de Bruijn graph E with
many bulges. The process of bulge removal should leave only the red edges remaining, yielding
an Eulerian path in the resulting graph.

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

AATG

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

GGA GAG AGT

TGGA

GGAG GAGT

AGTG

a

b

c

Nature Biotechnology: doi:10.1038/nbt.2023

12 / 17

Practical strategies for applying de Bruijn graphs: errors
Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This can be

detected and handled, via multiplicity of k-mers (multigraphs!) or of (k � 1)-mers

Example
● Simplification

E.g. the software Velvet (Zerbino and Birney, 2008) uses detection and

elimination of bubbles and tips.
13 / 17

Practical strategies for applying de Bruijn graphs: repeats

Supplementary Figure 2. De Bruijn graph of a genome with repeats. The graph E for k-mers
with different multiplicities: each of the four 3-mers TGC, GCG, CGT, and GTG has multiplicity
2, and each of the six 3-mers ATG, TGG, GGC, GCA, CAA, and AAT has multiplicity 1. An
Eulerian cycle is formed by following the numbered edges in the order 1,2,…,14: ATG, TGC,
GCG, CGT, GTG, TGC, GCG, CGT, GTG, TGG, GGC, GCA, CAA, AAT. This Eulerian cycle
spells the cyclic superstring ATGCGTGCGTGGCA.

AT

TG

GG

GC

CG

GT

CA

AA

11

34

5 2

12

1

1013

14
ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT

6

78

9

ATG

TGC

GCG

CGT

GTG

TGC

GCG

CGT

GTG

TGG

GGC

GCA

CAA

AAT

ATGCGGTGCGTGGCAATGGenome:
ATG

Nature Biotechnology: doi:10.1038/nbt.2023

Repeats can be detected using multiplicity of k-mers (edges). Again, using

multigraphs (edges have multiplicities).

14 / 17

Eulerian cycles in multigraphs

Theorem
A connected multigraph is Eulerian (has an Eulerian cycle) if and only if
every vertex is balanced.

Now indegree = sum of multiplicities of incoming edges (= number of
incoming edges counted with their multiplicities), outdegree defined
similarly.

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 11 NOVEMBER 2011 987

PR IMER

Phillip E. C. Compeau and Glenn Tesler
are in the Department of Mathematics,
University of California San Diego, La Jolla,
California, USA, and Pavel A. Pevzner is in
the Department of Computer Science and
Engineering, University of California
San Diego, La Jolla, California, USA.
e-mail: ppevzner@ucsd.edu

How to apply de Bruijn graphs to genome
assembly
Phillip E C Compeau, Pavel A Pevzner & Glenn Tesler

A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous
genome from billions of short sequencing reads into a tractable computational problem.

The development of algorithmic ideas
for next-generation sequencing can be

traced back 300 years to the Prussian city of
Königsberg (present-day Kaliningrad, Russia),
where seven bridges joined the four parts of the
city located on opposing banks of the Pregel
River and two river islands (Fig. 1a). At the
time, Königsberg’s residents enjoyed strolling
through their city, and they wondered if every
part of the city could be visited by walking
across each of the seven bridges exactly once
and returning to one’s starting location.
The solution came in 1735, when the great
 mathematician Leonhard Euler1 made a
 conceptual breakthrough that would solve
this ‘Bridges of Königsberg problem’. Euler’s
first insight was to represent each landmass as
a point (called a node) and each bridge as a
line segment (called an edge) connecting the
appropriate two points. This creates a graph—a
network of nodes connected by edges (Fig. 1b).
By describing a procedure for determining
whether an arbitrary graph contains a path
that visits every edge exactly once and returns
to where it started, Euler not only resolved
the Bridges of Königsberg problem but also
 effectively launched the entire branch of
 mathematics known today as graph theory2.

Since Euler’s original description, the use
of graph theory has turned out to have many

additional practical applications, most of
which have greater scientific importance
than the development of walking itineraries.
Specifically, Euler’s ideas were subsequently
adapted by Dutch mathematician Nicolaas de
Bruijn to find a cyclic sequence of letters taken
from a given alphabet for which every possible
word of a certain length (k) appears as a string
of consecutive characters in the cyclic sequence
exactly once (Box 1 and Fig. 2). Application
of the de Bruijn graph has also proven invalu-
able in the field of molecular biology where
researchers are faced with the problem of
assembling billions of short sequencing reads
into a single genome. In the following article,
we describe the problems faced when con-
structing a genome and how the de Bruijn
graph approach can be applied to assemble
short-read sequences.

Problems with alignment-based assembly
To illustrate why graphs are useful for
genome assembly, consider a simple exam-
ple with five very short reads (CGTGCAA,
ATGGCGT, CAATGGC, GGCGTGC and

TGCAATG) sequenced from a small circular
genome, ATGGCGTGCA (Fig. 3a). Current
next-generation sequencing methods produce
reads that vary in length, but the most popular
technology generates ~100-nucleotide reads. A
straightforward method for assembling reads
into longer contiguous sequences—and the
one used for assembling the human genome3,4
in 2001 as well as for all other projects based
on Sanger sequencing—uses a graph in which
each read is represented by a node and over-
lap between reads is represented by an arrow
(called a ‘directed edge’) joining two reads. For
instance, two nodes representing reads may
be connected with a directed edge if the reads
overlap by at least five nucleotides (Fig. 3b).

Visualizing an ant walking along the edges
of this graph provides an aid for understand-
ing a broad class of algorithms used to derive
insights from graphs. In the case of genome
assembly, the ant’s path traces a series of
overlapping reads, and thus represents a can-
didate assembly. Specifically, if the ant fol-
lows the path ATGGCGT A GGCGTGC A
CGTGCAA A TGCAATG A CAATGGC A

Figure 1 Bridges of Königsberg problem. (a) A map of old Königsberg, in which each area of the city is
labeled with a different color point. (b) The Königsberg Bridge graph, formed by representing each of
four land areas as a node and each of the city’s seven bridges as an edge.

a b

Recall the Bridges of Königsberg problem.
15 / 17

Homework

• On page 8, is this the only Euler tour? If not, find the other circular
string(s) which might give a solution. Do they also yield a superstring
for the input fragments of length 7?

• Repeat the algorithm from p. 7-8 with k = 4. How many Euler tours
exist now?

16 / 17

Origins of de Bruijn graphs

988 VOLUME 29 NUMBER 11 NOVEMBER 2011 NATURE BIOTECHNOLOGY

the computational problem of finding a
Hamiltonian cycle belongs to a class of prob-
lems that are collectively called NP-Complete
(see ref. 2 for further background). To this
day, some of the world’s top computer scien-
tists have worked to find an efficient solution
to any NP-Complete problem, with no suc-
cess. What makes their failure doubly frus-
trating is that no one has even been able to
prove that NP-Complete problems are intrac-
table; efficient solutions to these problems
may actually exist, but such solutions have
not yet been discovered.

Scalable assembly with de Bruijn graphs
As noted in the previous section, finding a
cycle that visits all nodes of a graph exactly
once (called the Hamiltonian cycle problem)
is a difficult computational problem; how-
ever, as we will soon see, finding a cycle that
visits all edges of a graph exactly once is much
easier. This algorithmic contrast has moti-
vated computer scientists to cast DNA frag-
ment assembly as such a problem. Instead of
assigning each k-mer contained in some read
to a node, we will now assign each such k-mer
to an edge. This allows the construction of a
‘de Bruijn graph’ as follows. First, form a node
for every distinct prefix or suffix of a k-mer,
meaning that a given sequence of length k–1

k-mer to another using a directed edge if the
suffix of the former equals the prefix of the
latter—that is, if the two k-mers completely
overlap except for one nucleotide at each end
(Fig. 3c). Third, look for a Hamiltonian cycle,
which represents a candidate genome because
it visits each detected k-mer; moreover, that
path will also have minimal length because
a Hamiltonian cycle travels to each k-mer
exactly once.

This method, however, is not as easy to
implement as it might seem. Imagine attempt-
ing to create a similar graph for a single run
of an Illumina (San Diego) sequencer that
generates many reads. A million (106) reads
will require a trillion (1012) pairwise align-
ments. A billion (109) reads necessitate a
quintillion (1018) alignments. What’s more,
there is no known efficient algorithm for
finding a Hamiltonian cycle in a large graph
with millions (let alone billions) of nodes. The
Hamiltonian cycle approach5,6 was feasible for
sequencing the first microbial genome7 in 1995
and the human genome in 2001, as well as for
all other projects based on Sanger sequenc-
ing. Even so, the computational burden of this
approach was so large that most next-gener-
ation sequencing projects have abandoned it.

And here is where genome sequencing
faces the limits of modern computer science:

ATGGCGT, its walk induces a ‘Hamiltonian
cycle’ in our graph, which is a path that
travels to every node exactly once and ends at
the starting node, meaning that each read will
be included once in the assembly. The circular
genome ATGGCGTGCA, which is computed
by concatenating the first two nucleotides in
each read in such a Hamiltonian cycle, con-
tains all five reads and thus reconstructs the
original genome (although we may have to
‘wrap around’ the genome, for example, to
locate CAATGGC in ATGGCGTGCA).

Modern assemblers usually work with
strings of a particular length k (k-mers),
which are shorter than entire reads (see
Box 2 for an explanation of why research-
ers prefer k-mers to reads). For example, a
100-nucleotide read may be divided into 46
overlapping 55-mers. The Hamiltonian cycle
approach can be generalized to make use of
k-mers by constructing a graph as follows.
First, from a set of reads, make a node for
every k-mer appearing as a consecutive sub-
string of one of these reads (e.g., in Fig. 3,
ATG, TGG, GGC, GCG, CGT, GTG, TGC,
GCA, CAA and AAT). Second, given a
k-mer, define its ‘suffix’ as the string formed
by all its nucleotides except the first one and
its ‘prefix’ as the string formed by all of its
nucleotides except the last one. Connect one

Box 1 Origin of de Bruijn graphs

In 1946, the Dutch mathematician Nicolaas de Bruijn became
interested in the ‘superstring problem’12: find a shortest circular
‘superstring’ that contains all possible ‘substrings’ of length
k (k-mers) over a given alphabet. There exist nk k-mers in an
alphabet containing n symbols: for example, given the alphabet
comprising A, T, G and C, there are 43 = 64 trinucleotides. If our
alphabet is instead 0 and 1, then all possible 3-mers are simply
given by all eight 3-digit binary numbers: 000, 001, 010, 011,
100, 101, 110, 111. The circular superstring 0001110100
not only contains all 3-mers but also is as short as possible, as
it contains each 3-mer exactly once. But how can one construct
such a superstring for all k-mers in the case of an arbitrary value
of k and an arbitrary alphabet? De Bruijn answered this question
by borrowing Euler’s solution of the Bridges of Königsberg problem.
Briefly, construct a graph B (the original graph called a de Bruijn
graph) for which every possible (k – 1)-mer is assigned to a node;
connect one (k – 1)-mer by a directed edge to a second (k – 1)-
mer if there is some k-mer whose prefix is the former and whose
suffix is the latter (Fig. 2). Edges of the de Bruijn graph represent
all possible k-mers, and thus an Eulerian cycle in B represents a
shortest (cyclic) superstring that contains each k-mer exactly once.
By checking that the indegree and outdegree of every node in B
equals the size of the alphabet, we can verify that B contains an
Eulerian cycle. In turn, we can construct an Eulerian cycle using
Euler’s algorithm, therefore solving the superstring problem. It
should now be apparent why the ‘de Bruijn graph’ construction described in the main text, which does not use all possible k-mers as edges
but rather only those generated from our reads, is also named in honor of de Bruijn.

1001

1100

0000 11111010

0101

0011

0110

11010100

0111

11101000

0001

1

2

3

4

5

6

7 9

8

10

11

12
1315

14

16

0010 1011
011

110100

001

000 010 101 111

Figure 2 De Bruijn graph. The de Bruijn graph B for k = 4 and a two-
character alphabet composed of the digits 0 and 1. This graph has an
Eulerian cycle because each node has indegree and outdegree equal to 2.
Following the blue numbered edges in order from 1 to 16 traces an
Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101,
1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000. Recording
the first character (in boldface) of each edge label spells the cyclic
superstring 0000110010111101.

PR IMER

17 / 17

