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These slides based on:  
An Introduction to Bioinformatics Algorithms (Jones and Pevzner, 2004) 

The Bridges of Königsberg Problem 

Bridges of Königsberg 

Find a tour crossing every bridge just once 
Leonhard Euler, 1735  
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•  Find a cycle that 
visits every edge 
exactly once 

 
•  Linear time 

More complicated Königsberg  
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•  Find a cycle that 
visits every vertex 
exactly once 

 
•  NP-complete  

Game invented by Sir  
William Hamilton in 1857 
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•  Problem: Given a set of strings, find a 
shortest string that contains all of them 

•  Input:  Strings f1, f2,…., fn 
•  Output:  A string s that contains all strings  
   f1, f2,…., fn as substrings, such that the length 

of s is minimized 
 

•  Complexity:  NP-complete  
•  Note:  this formulation does not take into 

account sequencing errors 
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•  1988:  SBH suggested as an 
an alternative sequencing 
method. Nobody believed it 
will ever work 

 
•  1991:  Light directed polymer 

synthesis developed by Steve 
Fodor and colleagues.  

•  1994:  Affymetrix develops 
first 64-kb DNA microarray 

 

First microarray  
prototype (1989) 

First commercial 
DNA microarray 
prototype w/16,000 
features (1994) 

500,000 features 
per chip (2002) 
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•  Attach all possible DNA probes of length k to a 
flat surface, each probe at a distinct and known 
location. This is called a DNA array. 

•  Apply a solution containing fluorescently labeled 
DNA fragment (many many copies!) to the array. 

•  The DNA fragment hybridizes with those probes 
that are complementary to substrings of length k 
of the fragment. 
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•  Using a spectroscopic detector, determine 
which probes hybridize to the DNA fragment 
to obtain the k–mer composition of the target 
DNA fragment. 

 
•  Apply the combinatorial algorithm (below) to 

reconstruct the sequence of the target DNA 
fragment from the k-mer composition. 
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•  Spectrum(s,k): unordered multiset of all possible  
(n – k + 1)  k-mers in a string s of length n 

•  The order of individual elements in Spectrum(s,k) 
does not matter (it’s a set!) 

•  For s = TATGGTGC the following is Spectrum(s,3):    
        {ATG, GGT, GTG, TAT, TGC, TGG} 
•  NB: for now, we are assuming that every k-mer 

occurs exactly once.  
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Different sequences – the same spectrum�

•  Different sequences may have the same 
spectrum:  

             Spectrum(GTATCT,2)= 
             Spectrum(GTCTAT,2)= 
             {AT, CT, GT, TA, TC} 
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•  Goal: Reconstruct a string from its k-mer 
composition 

•  Input:  A set S, representing all k-mers from 
an (unknown) string s 

 
•  Output:  String s such that Spectrum(s,k) = S 
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S = { ATG  AGG  TGC  TCC  GTC  GGT  GCA  CAG } 
 

   Path visited every VERTEX once 

ATG AGG TGC TCC GTC GGT GCA CAG 

ATG C A G G T C C 
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A more complicated graph: 
 
               
    S = { ATG    TGG      TGC      GTG      GGC     GCA      GCG     CGT } 
 
 
               
               ATG    TGG      TGC      GTG      GGC     GCA      GCG     CGT  
 
 
HH
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            S = { ATG   TGG    TGC    GTG    GGC   GCA    GCG    CGT } 
 
Path 1: 
 

HH

              ATGCGTGGCA 

HH

ATGGCGTGCA 

Path 2: 
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   S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT  }  
 

   Vertices correspond to (k-1)-mers:  { AT, TG, GC, GG, GT, CA, CG } 

   Edges correspond to k-mers from S 

AT 

GT CG 

CA GC TG 

GG        Path visited every EDGE once 
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S =  { AT, TG, GC, GG, GT, CA, CG } corresponds to two different 
paths: 

 
 

 

    ATGGCGTGCA     ATGCGTGGCA 

AT TG GC CA 

GG 

GT CG 

AT 

GT CG 

CA 
GC TG 

GG 

17 Modelli Biologici Discreti 


-$�*�� �'*�%�

•  A digraph is balanced if for every vertex the 
number of incoming edges equals to the 
number of outgoing edges:  

                           in(v)=out(v) 

•  Theorem:  A connected digraph is Eulerian if 
and only if each of its vertices is balanced. 
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•  Eulerian → balanced 

   for every edge entering v (incoming edge)  
there  exists an edge leaving v (outgoing 
edge). Therefore  

                        in(v)=out(v) 

•  Balanced → Eulerian 

    ??? 
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Algorithm for Constructing an Eulerian Cycle  

a.  Start with an arbitrary 
vertex v and form an 
arbitrary cycle with unused 
edges until a dead end is 
reached.  Since the graph is 
Eulerian this dead end is 
necessarily the starting 
point, i.e., vertex v. 
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Algorithm for Constructing an Eulerian Cycle (cont’d) 

b.   If cycle from (a) above is 
not an Eulerian cycle, it 
must contain a vertex w, 
which has untraversed 
edges (G connected). 
Perform step (a) again, 
using vertex w as the 
starting point. Once again, 
we will end up in the 
starting vertex w. 
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Algorithm for Constructing an Eulerian Cycle  (cont’d) 

c.  Combine the cycles 
from (a) and (b) into 
a single cycle and 
iterate step (b). 
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N.B.: The proof gives an algorithm for constructing an Eulerian cycle: 
Hierholzer’s algorithm. Running time: O(m), where m=no. of edges. 
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•  Theorem:  A connected digraph has an Eulerian 
path if  

•  a) it is balanced (in this case, it contains an 
Eulerian cycle), or  

•  b) by adding one edge, it becomes balanced (in 
this case, it contains an Eulerian path which is 
not a cycle). 

•  N.B.: b) is equivalent to: all but two vertices, say s and t, are 
balanced, while in(s)=out(s)-1 and in(t)=out(t)-1. 
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•  Fidelity of Hybridization:  difficult to detect 

differences between probes hybridized with perfect 
matches and 1 or 2 mismatches 

•  Array Size:  Effect of low fidelity can be decreased 
with longer k-mers, but array size increases 
exponentially in k.  Array size is limited with current 
technology. 

•  Practicality:  SBH is still impractical. As DNA 
microarray technology improves, SBH may become 
practical in the future 

•  Practicality again: Although SBH is still impractical, 
it spearheaded expression analysis and SNP 
analysis techniques 
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