Strings in molecular biology

Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

Strings and Sequences in Biology

Strings are finite sequences over an alphabet Σ (also called sequences).

- DNA (characters: nucleotides) $\Sigma = \{A, C, G, T\}$
- RNA (characters: nucleotides) $\Sigma = \{A, C, G, U\}$
- proteins (characters: amino acids) $\Sigma = \{A, C, D, E, F, \dots, W, Y\}$
- many other problems in molecular biology
- can be modelled by strings (e.g. gene order, SNPs, haplotypes, \dots)

2 / 10

DNA: nucleotides

- 5' ... AACAGTACCATGCTAGGTCAATCGA... 3'
- 3' ... TTGTCATGGTACGATCCAGTTAGCT... 5'
- 4 characters: A C G T: adenine, cytosine, guanine, thymine (bases, nucleotides)
- orientation (read from 5' to 3' end)
- length measured in bp (base pairs)
- double stranded, the two strands are antiparallel
- A T and C G complementary (Watson-Crick pairs)
- reverse complement: $(ACCTG)^{rc} = CAGGT$

3 / 10

The central dogma of molecular biology

4 / 10

source: Wonderwikikids cor

DNA: nucleotides

- 5' ... AACAGTACCATGCTAGGTCAATCGA... 3'
- 3' ... TTGTCATGGTACGATCCAGTTAGCT... 5'
- during transcription, one strand is copied into mRNA (messenger RNA), except all T's are replaced by U's
- the strand which is identical to the mRNA is called *coding* strand
- the other strand (the one which is used for the transcription) is called *template* strand
- Both strands can be used as coding strands (for different genes).
- Some DNA strings are circular: bacterial DNA, mitochondrial DNA.

RNA: nucleotides

- like DNA, except:
- 4 characters: A C U G: adenine, cytosine, uracil, guanine (U instead of T)
- RNA is single-stranded
- builds double stranded hybrids with DNA
- RNA folds upon itself (makes complex 3-dim structures), using the Watson-Crick pairs and other bonds (RNA folding)

Protein: Amino acids

There are 20 common amino acids (aa's); two systems of abbreviations are used: 3-letter-code and 1-letter-code. We usually use the 1-letter-code.

alanine	Ala	A	leucine	Leu	L
arginine	Arg	R	lysine	Lys	Κ
asparagine	Asn	Ν	methionine	Met	М
aspartic acid	Asp	D	phenylalanine	Phe	F
cysteine	Cys	С	proline	Pro	Ρ
glutamine	Gln	Q	serine	Ser	S
glutamic acid	Glu	E	threonine	Thr	Т
glycine	Gly	G	tryptophan	Trp	W
histidine	His	Н	tyrosine	Tyr	Y
isoleucine	lle	I	valine	Val	V
glycine histidine isoleucine	Gly His Ile	G H I	tryptophan tyrosine valine	Trp Tyr Val	W Y V

7 / 10

Second letter U с Α G UUU }Phe UUC }Phe UUA }Leu UCU UCC UCA UCG UAU }Tyr UAC Stop UAA Stop UAG Stop UGG Trp υ CCU CCC CCA CCG $\left(\begin{array}{c} \mathsf{CAU} \\ \mathsf{CAC} \end{array} \right) \mathsf{His} \\ \left(\begin{array}{c} \mathsf{CAC} \\ \mathsf{CAG} \end{array} \right) \mathsf{Gin} \end{array}$ CUL CUC CUA CUG с First letter letter AUU AUC AUA ACU ACC ACA AAU } Asn AAC } Asn AAA } Lys AAG } Lys Third I AGU] A AGA AGG Arg GGL GGC GGA GAU⁻ Asp GAC GAA G Glu

source: Wikimedia commons

8 / 10

The genetic code

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence 5' ... TATTCGAATCGGC... 3'
- can be translated in 3 different ways, leading to different aa sequences.
- degeneracy of the genetic code
- silent mutations

The genetic code

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence 5' ... TATTCGAATCGGC...3'

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code: 64 codons but only 20 aa's plus stop codon
- silent mutations

9 / 10

The genetic code

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ... TATTCGAATCGGC... 3'

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code: 64 codons but only 20 aa's plus stop codon
- $\bullet\,$ silent mutations: if third position mutates, this often does not alter the aa

The genetic code

Exercise:

Translate this DNA sequence according to the 3 different reading frames:

5' TATTCGAATCGGC.... 3'

9 / 10