## **Bioinformatics Algorithms**

(Fundamental Algorithms, module 2)

#### Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

Strings and Sequences in Biology

# Strings in molecular biology

Strings are finite sequences over an alphabet  $\Sigma$  (also called *sequences*).

- DNA (characters: nucleotides) Σ = {A,C,G,T}
  RNA (characters: nucleotides) Σ = {A,C,G,U}
  proteins (characters: amino acids) Σ = {A,C,D,E,F,...,W,Y}
- many other problems in molecular biology can be modelled by strings (e.g. gene order, SNPs, haplotypes, ...)

## DNA: nucleotides

- 5' ... AACAGTACCATGCTAGGTCAATCGA... 3'
- 3' ... TTGTCATGGTACGATCCAGTTAGCT... 5'
- 4 characters: A C G T: adenine, cytosine, guanine, thymine (bases, nucleotides)
- orientation (read from 5' to 3' end)
- length measured in bp (base pairs)
- double stranded, the two strands are antiparallel
- A T and C G complementary (Watson-Crick pairs)
- reverse complement:  $(ACCTG)^{rc} = CAGGT$

## The central dogma of molecular biology



source: Wonderwikikids.com

## DNA: nucleotides

- 5' ... AACAGTACCATGCTAGGTCAATCGA... 3'
- 3' ... TTGTCATGGTACGATCCAGTTAGCT... 5'

- during transcription, one strand is copied into mRNA (messenger RNA), except all T's are replaced by U's
- the strand which is identical to the mRNA is called *coding* strand
- the other strand (the one which is used for the transcription) is called *template* strand
- Both strands can be used as coding strands (for different genes).
- Some DNA strings are circular: bacterial DNA, mitochondrial DNA.

## **RNA:** nucleotides

- like DNA, except:
- 4 characters: A C U G: adenine, cytosine, uracil, guanine (U instead of T)
- RNA is single-stranded
- builds double stranded hybrids with DNA
- RNA folds upon itself (makes complex 3-dim structures), using the Watson-Crick pairs and other bonds (RNA folding)

## Protein: Amino acids

There are 20 common amino acids (aa's); two systems of abbreviations are used: 3-letter-code and 1-letter-code. We usually use the 1-letter-code.

| alanine       | Ala | А   |
|---------------|-----|-----|
| arginine      | Arg | R   |
| asparagine    | Asn | Ν   |
| aspartic acid | Asp | D   |
| cysteine      | Cys | С   |
| glutamine     | Gln | Q   |
| glutamic acid | Glu | Е   |
| glycine       | Gly | G   |
| histidine     | His | Н   |
| isoleucine    | lle | I – |

| leucine       | Leu | L |  |
|---------------|-----|---|--|
| lysine        | Lys | Κ |  |
| methionine    | Met | Μ |  |
| phenylalanine | Phe | F |  |
| proline       | Pro | Ρ |  |
| serine        | Ser | S |  |
| threonine     | Thr | Т |  |
| tryptophan    | Trp | W |  |
| tyrosine      | Tyr | Υ |  |
| valine        | Val | V |  |

Second letter

|              |   | U                               | С                        | А                                  | G                                 |                  |              |
|--------------|---|---------------------------------|--------------------------|------------------------------------|-----------------------------------|------------------|--------------|
| First letter | υ | UUU<br>UUC<br>UUA<br>UUA<br>UUG | UCU<br>UCC<br>UCA<br>UCG | UAU<br>UAC<br>UAA Stop<br>UAG Stop | UGU<br>UGC<br>UGA Stop<br>UGG Trp | U<br>C<br>A<br>G |              |
|              | с | CUU<br>CUC<br>CUA<br>CUG        | CCU<br>CCC<br>CCA<br>CCG | CAU<br>CAC<br>CAA<br>CAG<br>Gin    | CGU<br>CGC<br>CGA<br>CGG          | U<br>C<br>A<br>G | Third letter |
|              | A | AUU<br>AUC<br>AUA<br>AUG Met    | ACU<br>ACC<br>ACA<br>ACG | AAU<br>AAC<br>AAA<br>AAG<br>Lys    | AGU }Ser<br>AGC }Arg<br>AGA }Arg  | U<br>C<br>A<br>G | Third        |
|              | G | GUU<br>GUC<br>GUA<br>GUG        | GCU<br>GCC<br>GCA<br>GCG | GAU<br>GAC<br>GAA<br>GAG<br>Glu    | GGU<br>GGC<br>GGA<br>GGG          | U<br>C<br>A<br>G |              |

source: Wikimedia commons

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ... TATTCGAATCGGC... 3'

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code
- silent mutations

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ... TATTCGAATCGGC... 3'

can be translated in 3 different ways, leading to different aa sequences.

- *degeneracy of the genetic code*: 64 codons but only 20 aa's plus stop codon
- silent mutations

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ... TATTCGAATCGGC... 3'

can be translated in 3 different ways, leading to different aa sequences.

- *degeneracy of the genetic code*: 64 codons but only 20 aa's plus stop codon
- silent mutations: if third position mutates, this often does not alter the aa

Exercise:

Translate this DNA sequence according to the 3 different reading frames:

5' .... TATTCGAATCGGC.... 3'

#### Exercise:

Translate this DNA sequence according to the 3 different reading frames:

5' ... TATTCGAATCGGC... 3'

#### Solution

- 1st reading frame: TAT, TCG, AAT, CGG, C = Tyr-Ser-Asn-Arg = YSNR
- 2nd reading frame: T, ATT, CGA, ATC, GGC = IIe-Arg-IIe-Gly = IRIG
- 3rd reading frame: TA, TTC, GAA, TCG, GC = Phe-Glu-Ser = FES