Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

String Distance Measures

Similarity vs. distance

Two ways of measuring the same thing:

- 1. How similar are two strings?
- 2. How different are two strings?
- 1. Similarity: the higher the value, the closer the two strings.
- 2. Distance: the lower the value, the closer the two strings.

2 / 21

Similarity vs. distance

Example

- s = TATTACTATC
- t = CATTAGTATC
 - percentage of equal positions: $|\{i: s_i = t_i\}| = 8$ out of 10 = 80% s = t if 100% similar, i.e. if highest possible This is called percent similarity in biology.
 - number of different positions: $|\{i: s_i \neq t_i\}| = 2$ (out of 10) s = t if 0, i.e. if lowest possible

 This is called Hamming distance of the two strings.

(Note that both are defined only if |s|=|t|.)

From alignments to distance

Edit operations

• substitution: a becomes b, where $a \neq b$

deletion: delete character ainsertion: insert character a

One often views alignments in this way: thinking about the changes that happened turning one string into the other (evolution, typos, ...). E.g.

4 / 21

3 / 21

From alignments to distance

Edit operations

• substitution: a becomes b, where $a \neq b$

deletion: delete character ainsertion: insert character a

One often views alignments in this way: thinking about the changes that happened turning one string into the other (evolution, typos, ...). E.g.

ACCT	ACCT	-ACCT
CACT	CACT	CA-CT
2 substitutions	2 deletions, 1 substition,	1 insertion 1 deletion
	2 insertions	

The edit distance

(Unit cost) edit distance, also called Levenshtein distance (Levenshtein, 1965).

Definition

The edit distance $d_{edit}(s,t)$ is the minimum number of edit operations needed to transform s into t.

Example

 $s = \mathsf{TACAT},\, t = \mathsf{TGATAT}$

4 / 21 5 / 21

The edit distance

(Unit cost) edit distance, also called Levenshtein distance (Levenshtein, 1965).

Definition

The edit distance $d_{edit}(s,t)$ is the minimum number of edit operations needed to transform s into t.

Example

- s = TACAT, t = TGATAT
 - TACAT $\overset{\text{subst}}{\rightarrow}$ GACAT $\overset{\text{del}}{\rightarrow}$ GAAT $\overset{\text{ins}}{\rightarrow}$ TGAAT $\overset{\text{ins}}{\rightarrow}$ TGATAT 4 edit op's
 TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGATAT 2 edit op's
 - TACAT $\overset{\text{ins}}{\to}$ TGACAT $\overset{\text{subst}}{\to}$ TGAGAT $\overset{\text{subst}}{\to}$ TGATAT 3 edit op's

5 / 2

Minimum length series of edit operations

We are looking for a series of operations of minimum length (= shortest):

 $d_{edit}(s, t) = \min\{|S| : S \text{ is a series of operations transforming } s \text{ into } t\}$

N.B.

There may be more than one series of op's of minimum length, but the length is unique.

6 / 21

Exercises on edit distance

Exercises

- If t is a substring of s, then what is $d_{edit}(s, t)$?
- What is $d_{edit}(s, \epsilon)$?
- If we can transform s into t by using only deletions, then what can we say about s and t?
- If we can transform s into t by using only substitutions, then what can we say about s and t?
- If we can transform s into t with k edit operations, then what can we say about $d_{edit}(s,t)$?

What is a distance?

The mathematical formalization of distance is metric:

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

1. $d(x,y) \ge 0$, and $(d(x,y) = 0 \Leftrightarrow x = y)$

(non-negative, identity of indiscernibles)

 $2. \ d(x,y) = d(y,x)$

(symmetric)

3. $d(x,y) \le d(x,z) + d(z,y)$

(triangle inequality)

7 / 21

8 / 21

8 / 21

9 / 21

What is a distance?

The mathematical formalization of distance is metric:

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

1. $d(x,y) \geq 0$, and $(d(x,y) = 0 \Leftrightarrow x = y)$ (non-negative, identity of indiscernibles)

2. d(x,y) = d(y,x) (symmetric)

3. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

Examples

- Euclidean distance on \mathbb{R}^2 : $d(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$ where $x = (x_1, x_2), y = (y_1, y_2)$
- Manhattan distance on \mathbb{R}^2 : $d(x,y) = |x_1 y_1| + |x_2 y_2|$
- Hamming distance on Σ^n : $d_H(s,t) = \{i : s_i \neq t_i\}$.

The edit distance is a metric

Claim: The edit distance is a metric.

Proof: Let $s, t, u \in \Sigma^*$ (strings over Σ):

- 1. $d_{edit}(s,t) \geq 0$: to transform s to t, we need 0 or more edit op's. Also, we can transform s into t with 0 edit op's if and only if s=t.
- 2. Since every edit operation can be inverted, we get $d_{edit}(s,t) = d_{edit}(t,s)$.
- 3. (by contradiction) Assume that $d_{edit}(s,u) + d_{edit}(u,t) < d_{edit}(s,t)$, and $\mathcal S$ transforms s into u in dist(s,u) steps, and $\mathcal S'$ transforms u into t in $d_{edit}(u,t)$ steps. Then the series of op's $\mathcal S' \circ \mathcal S$ (first $\mathcal S$, then $\mathcal S'$) transforms s into t, but is shorter than $d_{edit}(s,t)$, a contradiction to the definition of d_{edit} .

Exercise: Show that the Hamming distance is a metric.

Alignments vs. edit operations

Every alignment corresponds to a series of edit operations:

- match \mapsto do nothing
- mismatch \mapsto substitution
- gap below \mapsto deletion
- $\bullet \ \mathsf{gap} \ \mathsf{on} \ \mathsf{top} \mapsto \mathsf{insertion}$

Example

T-ACAT-

TGAT-AT

 $\mathsf{TACAT} \xrightarrow{\mathsf{ins}} \mathsf{TGACAT} \xrightarrow{\mathsf{subst}} \mathsf{TGATAT} \xrightarrow{\mathsf{del}} \mathsf{TGATT} \xrightarrow{\mathsf{subst}} \mathsf{TGATA} \xrightarrow{\mathsf{ins}} \mathsf{TGATAT}$ (By convention, we apply the edit operations from left to right.)

10 / 2

11 / 21

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

- TACAT $\overset{\text{subst}}{\rightarrow}$ GACAT $\overset{\text{del}}{\rightarrow}$ GAAT $\overset{\text{ins}}{\rightarrow}$ TGAAT $\overset{\text{ins}}{\rightarrow}$ TGATAT
- $\bullet \ \mathsf{TACAT} \overset{\mathsf{ins}}{\to} \ \mathsf{TGA} \overset{\mathsf{subst}}{\to} \ \mathsf{TGA} \overset{\mathsf{subst}}{\to} \ \mathsf{TGA} \overset{\mathsf{TAT}}{\to}$
- TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGAGAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

11 / 21

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

- $\bullet \ \ \, \overset{\text{TACAT}}{\longrightarrow} \stackrel{\text{subst}}{\longrightarrow} \stackrel{\text{GACAT}}{\longrightarrow} \stackrel{\text{del}}{\longrightarrow} \stackrel{\text{GAAT}}{\longrightarrow} \stackrel{\text{ins}}{\longrightarrow} \stackrel{\text{TGATAT}}{\longrightarrow} \stackrel{\text{TAC-AT}}{\longrightarrow} \stackrel{\text{TGA-TAT}}{\longrightarrow}$
- $\bullet \ \mathsf{TACAT} \overset{\mathsf{ins}}{\to} \mathsf{TGACAT} \overset{\mathsf{subst}}{\to} \mathsf{TGATAT} \qquad \qquad \overset{\mathsf{T-ACAT}}{\to} \mathsf{TGATAT}$
- TACAT $\stackrel{\text{ins}}{\to}$ TGACAT $\stackrel{\text{subst}}{\to}$ TGAGAT $\stackrel{\text{subst}}{\to}$ TGATAT $\stackrel{???}{\to}$

Alignments vs. edit operations

Fact

Every $\mbox{\sc minimum-length}$ series of operations corresponds to an alignment.

Proof (sketch):

Show that in a minimum-length series of edit operations, each position of each string is involved in at most one operation.

12 / 21

Alignments vs. edit operations

Take the following scoring function: match=0, mismatch=-1, gap=-1. If alignment $\mathcal A$ corresponds to the series of operations $\mathcal S$, then:

$$\mathsf{score}(\mathcal{A}) = -|\mathcal{S}|$$

where $|\mathcal{S}|=$ no. of operations in $\mathcal{S}.$

Example

 $\bullet \ \mathsf{TACAT} \stackrel{\mathsf{subst}}{\to} \ \mathsf{GACAT} \stackrel{\mathsf{del}}{\to} \ \mathsf{GAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGATAT}$

-TAC-AT TGA-TAT

 $\bullet \ \mathsf{TACAT} \xrightarrow{\mathsf{ins}} \mathsf{TGA} \xrightarrow{\mathsf{CAT}} \xrightarrow{\mathsf{subst}} \mathsf{TGA} \xrightarrow{\mathsf{TAT}}$

T-ACAT TGATAT

Optimal alignment score vs. edit distance

Theorem

With the scoring function:

match = 0, mismatch = -1, gap = -1, we have:

$$sim(s,t) = -d_{edit}(s,t).$$

Moreover, we get the same optimal alignments / minimum-length series of edit operations.

(This seems obvious but it actually needs to be proved. Formal proof see Setubal & Meidanis book, Sec. 3.6.1.)

13 / 21

14 / 21

Computing the edit distance

Note first that we can assume that (a) edit operations happen left-to-right, and (b) every character is involved in at most one edit operation. For computing an optimal alignment, we consider what happens to the last characters. Then transforming s into t can be done in one of 3 ways:

- 1. transform $s_1 \dots s_{n-1}$ into t and then delete last character of s
- 2. if $s_n=t_m$: transform $s_1\dots s_{n-1}$ into $t_1\dots t_{m-1}$ if $s_n\neq t_m$: transform $s_1\dots s_{n-1}$ into $1_1\dots t_{m-1}$ and substitute s_n with t_m
- 3. transform s into $t_1 \dots t_{m-1}$ and insert t_m

So again we can use Dynamic Programming!

Computing the edit distance

We will need a DP-table (matrix) \emph{E} of size $(n+1) \times (m+1)$ (where n=|s| and m=|t|).

Definition: $E(i,j) = d_{edit}(s_1 \dots s_i, t_1 \dots t_j)$

Computation of E(i,j):

- Fill in first row and column: E(0,j) = j and E(i,0) = i
- for i,j>0: now E(i,j) is the minimum of 3 entries plus 1 (top and left) or plus 0/plus 1, depending on whether current chars are the same or different

16 / 21

- return entry on bottom right E(n, m)
- backtrace for a shortest series of edit operations

15 / 21

Algorithm for computing the edit distance

Algorithm DP algorithm for edit distance

Input: strings s, t, with |s| = n, |t| = m

Output: value $d_{edit}(s, t)$

- 1. **for** j = 0 to m **do** $E(0,j) \leftarrow j$;
- 2. **for** i = 1 to n **do** $E(i, 0) \leftarrow i$;
- 3. **for** i = 1 to n **do**
- 4. **for** j = 1 to m **do**

$$E(i,j) \leftarrow \min \begin{cases} E(i-1,j) + 1 \\ \begin{cases} E(i-1,j-1) & \text{if } s_i = t_j \\ E(i-1,j-1) + 1 & \text{if } s_i \neq t_j \end{cases} \\ E(i,j-1) + 1 \end{cases}$$

return E(n, m);

Analysis

- Space: O(nm) for the DP-table
- Time:
 - computing $d_{edit}(s,t)$: $3nm+n+m+1 \in O(nm)$ (resp. $O(n^2)$ if n=m)
 - finding an optimal series of edit op's: O(n+m) (resp. O(n) if n=m)

17 / 21

General cost function

General cost edit distance

Different edit operations can have different cost (but some conditions must hold, e.g. cost(insert) = cost(delete), why?).

Computable with same algorithm in same time and space.

LCS distance

Given two strings s and t,

 $LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$

is the length of a longest common subsequence of s and t.

Example

Let $s = \mathsf{TACAT}$ and $t = \mathsf{TGATAT}$

19 / 21 20 / 21

LCS distance

Given two strings s and t,

$$LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$$

is the length of a longest common subsequence of \boldsymbol{s} and $\boldsymbol{t}.$

Example

Let $s = \mathsf{TACAT}$ and $t = \mathsf{TGATAT}$, then we have $\mathit{LCS}(s, t) = 4$. $s = \mathsf{TACAT}$, $t = \mathsf{TGATAT}$

LCS-distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

Example

We have $d_{LCS}(s, t) = 5 + 6 - 2 \cdot 4 = 3$.

LCS distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

N.B.

There may be more than one longest common subsequence, but the length $\mathit{LCS}(s,t)$ is unique! E.g. $s' = \mathsf{TAACAT},\ t' = \mathsf{ATCTA},$ then $\mathit{LCS}(s',t') = 3$, and ACA, TCA, TCT, ACT are all longest common subsequences.

LCS distance

In the example above, we have $d_{LCS}(s',t')=6+5-2\cdot 3=5$.

Exercise

(1) Prove that d_{LCS} is a metric. (2) Find a DP-algorithm that computes LCS(s,t).

20 / 21