Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2017/18, spring term

The g-gram distance

What is a g-gram?

Let ¥ be the alphabet, with |X| = 0.
Def.
A g-gram is a string of length q.

Note
g-grams are also called k-mers, w-words, or k-tuples. Typically, g (or k,
w, etc.) is small, much smaller than the strings we will want to compare.

We will fix g, and use the number of occurrences of g-grams to compute
distances between strings.

g-gram profile

Fix some enumeration of ¥9, i.e. some order in which we want to list all
g-grams (e.g. the lexicographic order).

Def.
Let s be a string over ¥, |s| > g. The g-gram profile of s, Pg4(s) is an
array of size 09, where the ith entry is

Pq(s)li] = N(s, u3),

and u; is the ith g-gram in the enumeration.

The g-gram distance

o In many situations, edit distance is a good model for differences /
similarity between strings.

o But sometimes, other distance functions serve the purpose better.

Motivations for using g-gram distance

1. If two parts of a sequence are exchanged (e.g. two paragraphs, two
long substrings, two genes), then one can argue that the resulting
strings still have high similarity; however, the edit distance will be big.
The g-gram distance can be more appropriate in this case.

2. The edit distance needs quadratic computation time, but this is often
too slow. The g-gram distance can be computed in linear time.

Occurrence count

Let s be a string of length n > g, and u be a g-gram. The occurrence
count of uin s is

N(S, u) = ‘{I LS., .S,'+q,1 = u}|,
the number of times g-gram v occurs in s.
Ex.
Let s = ACAGGGCA, then
N(s,AC) = N(s,AG) = N(s,GC) =1, N(s,CA) = N(s,GG) = 2, and for all
other g-grams u over ¥, N(s,u) = 0.

Example:
u Pq(s) Pq(t) Pq(v)
Let ¥ = {A,C,G,T} and g = 2. vy 0 1
AC 1 1 1
Let AG 1 0 1
s = ACAGGGCA, AT 0 0 0
t = GGGCAACA, e 22 !
= AAGGACA ce 0 0 0
= :) cG 0 0 0
Then the g-gram profiles of s, t, v are cT 0 0 0
shown on the right. GA 0 0 1
GC 1 1 0
GG 2 2 1
Notice that the sum of all entries of GT 0 0 0
Py(s) = |s| — g+1 = total number of TA 0 0 0
g-gram occurrences in s = number of TIC 0 0 0
. .. . TG 0 0 0
distinct positions in s where a g-gram T 0 0 0

starts.

g-gram distance

(Introduced by Ukkonen, 1992)

Def.: Given two strings s, t, the g-gram distance of s and t is

distq_gram(s, t) = Z [N(s, u) — N(t, u)].

uexd

Equivalent def.: Given two strings s, t, the g-gram distance of s and t is

distq—gram(s, t) = Z [Pg(s)[i] — Pa(t)[]
i=1

which is the Manhattan distance! of the g-gram profiles of s and t.

1The Manhattan distance, or L;-distance, of two vectors x,y € R" is defined as

2o i = il

g-gram distance

In the previous example (g = 2, s = ACAGGGCA, t = GGGCAACA, and
v = AAGGACA), we have

disty_gram(s, t) = 2, dists_gram(s, v) = 5, and disty_gram(t,v) = 5.
Note that it is possible to have distinct strings with g-gram distance 0, e.g.

for w = AGGGCACA, we have dists_gram(s, w) = 0.

(Don’t just believe this, double check it!)

Connection to edit distance

g-gram Lemma
Let degit(s, t) denote the (unit-cost) edit distance of s and t. Then

distq— s, t
—deeme é’;m(.1) < degit (s, t).

Proof

Every edit operation contributes to the g-gram distance at most 2q: Consider the
simplest case, a substitution in position i of s, where character s; is substituted by
character x, and let s’ be the resulting string. If ¢ </ < |s| — g + 1, then there
are exactly g g-grams of s affected by the substitution: s; 411 ...5;, up to
Si...Siyq—1 (otherwise fewer); the counts of all these are decremented by 1, while
the counts of the new g-grams s;_141...x, Sj...XSjq, etc. are incremented by 1.
Therefore, distq_gram(s,s’) < 2q (it could be less because these g-grams need not
be all distinct). For a deletion, the number of g-grams whose count is
decremented is at most g, while those whose count is incremented is at most

q — 1; for an insertion the other way around.—The claim follows by induction on

the number of edit operations.
10 /19

g-gram distance

In the previous example (g = 2, s = ACAGGGCA, t = GGGCAACA, and
v = AAGGACA), we have

disty_gram(s, t) = 2, dista_gram(s,v) = 5, and dista_gram(t, v) = 5.
Note that it is possible to have distinct strings with g-gram distance 0, e.g.

for w = AGGGCACA, we have disty_gram(s, w) = 0.

The g-gram distance is a pseudo-metric

Lemma
The g-gram distance is a pseudo-metric, i.e. it is non-negative, symmetric,
and obeys the triangle inequality (but it is possible to have x # y with

distg—_gram(x,y) = 0).

Proof:

The three properties follow from the fact that the Manhattan metric is a
metric. The example above shows that disty_gram(x, y) = 0 does not
imply x = y.

Exercise:

Prove the lemma explicitly.

Connection to edit distance

Examples
With the earlier examples, we have
1. Exchange of two long substrings: degit(s, t) = 6, degit(s, w) = 4
(compare to: distg—gram(s, t) = 2, disty—gram(s, w) = 0, with g = 2).
2. The g-gram distance is at most 2q times edit distance (g-gram
lemma): degit(s, v) =2
(compare to: distg_gram(s,v) =5 < 8 = degit(s, v) - 2q, with g = 2)

Based on the g-gram lemma and the fact that the g-gram distance can be
computed in linear time, we can use the g-gram distance as a filter for edit
distance computations.

11/ 19

Computation of the g-gram distance

Basic ideas

Use a sliding window of size q over s and ¢t

Use an array dy of size o9

First slide a window over s, increment respective entry for every
g-gram seen

Then slide over t, decrement respective entry for every g-gram seen
Now dg[r] = N(s, ur) — N(t, uy).

Sum up the absolute values of the entries:

distq—gram(s, t) = 3_; [dq[i]|

We will see: This algorithm runs in linear time.

But: how do we know where to find the entry for the current g-gram?
This is called ranking (coming soon)

12 /19

roou, dy(s)
Goal 0 A[’X qo
Given g-gram u, we want to know which entry of 1 AC 1
the array u corresponds to. 2 A6 1
Ex.: Where is the g-gram CG? In position 6. 3 AT 0
4 CA 2
Ranking functions 5 ¢ 0
) o L 6 CG 0
e A ranking function is a bijection 7 ¢cT 0
rank : X9 —[0...09 - 1]. 8 GA 0
e rank(u) gives us the position of u in the 9 6 1
enumeration of X9 1066 2
11 GT 0
e needs to be very efficiently computable 12 TA 0
e the ranking function we use will give us 131 0
constant time per g-gram of s 14 16 0
15 TT 0

14 /19

Sliding window

Crucial trick
The rank of the g-gram starting in position i + 1 can be computed from
the rank of the g-gram starting in position / in constant time.

Example
Let s = GACATTGACGAT, and let g = 4. Let's compare the rank of CATT

and ATTG, two consecutive g-grams:
rank(CATT) = 1-4340-4%2+3.4'4+3.40
rank(ATTG) = 0-434+3.4243.4142.40

So 1-43 has to be subtracted, the rest multiplied by 4, and finally
2-4% = 2 added.

16 /19

Computation of the g-gram distance

Algorithm for computing g-gram distance
input: Strings s, t of length [s| = nand [t/ =m
output: disty_gram(s, t)
1. initialize dg[0...09 — 1] with Os
2. fori=1,...,n—q+1:r<« rank(s;...Sitq-1)
dg[r] < dg[r] +1
3. fori=1,...,m—q+1:r< rank(tj... ti1q-1)
dg[r] < dg[r] —1
4.d<+0
5. fori=0...09—1:d <« d+|dgli]]-
6. return d

13 /19

Ranking function

Basic idea: We will interpret the g-gram itself as a number: a number
base . In our case: o = 4.

First, we assign numbers 0,...,0 — 1 (here: 0,1,2,3) to the
characters:
f:A—0,C—~1,6—2,T— 3

Second, we extend this to strings: e.g. CG becomes
124 =1-4' +2.49 = 654. (i.e. 12 in base 4 equals 6 in base 10.)

In general, for u = uy ... uq, the rank(u) is given by:

rank(u) = f(u1) - 09+ F(un) - 09 2 4. 4 F(ugo1) - ot + F(ug) - o°.

o E.g. rank(CATT) =1-43+0-424+3-4+3-1=64+0+124+3=79.

15 /19

Sliding window
In general:
rank(si...sirq-1) = f(si) 2097 f(si4) - oI+ f(Sivq-1)
rank(sis1...Sitrq) = F(siv1) - 0T+ o+ F(Sigo1) - 0 + F(Sitq)

Therefore, if rank(s; . .. siyq—1) = C, then

rank(sis1 - Sivq) = (C — £(s;) - 09 1) - 0 + F(Si+q)

Ex. rank(ATTG) = (rank(CATT)—1-43).4+2.40 = (79— 64)-4+2 = 62.
Double check: rank(ATTG) =0-434+3.42 434 +2=48+12+2 =62.

17 /19

Analysis Analysis (cont.)

Computing the g-gram distance of two strings s, t of length n resp. m:
e initialize array dg: O(09) time
o slide window of size g over s: there are n — g + 1 windows, for each,
we have to compute its rank r and then update the entry dg(r); rank
of first window takes O(q) time, for all following windows O(1), while

e computing the rank of the first g-gram: O(q) time ; ! ' >
updating entry is always constant time - O(n) time

e computing rank of the (i + 1)st g-gram, given the rank of the ith

g-gram: constant time o slide window of size g over t: similarly, O(m) time

e compute sum of absolute values: O(c9) time
Thus,

e Total time: O(n+ m+ 09)

o Total space: O(c%) (for the array dg)

o If we choose g < log,(n), log,(m), then 7 = O(n+ m), so we have
linear time and space O(n + m).

18 /19 19 /19

