Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

The *q*-gram distance

The *q*-gram distance

- In many situations, edit distance is a good model for differences / similarity between strings.
- But sometimes, other distance functions serve the purpose better.

Motivations for using q-gram distance

- If two parts of a sequence are exchanged (e.g. two paragraphs, two long substrings, two genes), then one can argue that the resulting strings still have high similarity; however, the edit distance will be big. The *q*-gram distance can be more appropriate in this case.
- 2. The edit distance needs quadratic computation time, but this is often too slow. The *q*-gram distance can be computed in linear time.

What is a *q*-gram?

Let Σ be the alphabet, with $|\Sigma| = \sigma$.

Def.

A q-gram is a string of length q.

Note

q-grams are also called *k*-mers, *w*-words, or *k*-tuples. Typically, *q* (or *k*, w, etc.) is small, much smaller than the strings we will want to compare.

We will fix q, and use the number of occurrences of q-grams to compute distances between strings.

Occurrence count

Let s be a string of length $n \ge q$, and u be a q-gram. The occurrence count of u in s is

$$N(s, u) = |\{i : s_i \dots s_{i+q-1} = u\}|,$$

the number of times q-gram u occurs in s.

Ex.

Let s = ACAGGGCA, then

N(s, AC) = N(s, AG) = N(s, GC) = 1, N(s, CA) = N(s, GG) = 2, and for all other q-grams u over Σ , N(s, u) = 0.

q-gram profile

Fix some enumeration of Σ^q , i.e. some order in which we want to list all q-grams (e.g. the lexicographic order).

Def.

Let s be a string over Σ , $|s| \ge q$. The *q*-gram profile of s, $P_q(s)$ is an array of size σ^q , where the *i*th entry is

$$P_q(s)[i] = N(s, u_i),$$

and u_i is the *i*th *q*-gram in the enumeration.

Example:

Let $\Sigma = \{A, C, G, T\}$ and q = 2.

Let

s = ACAGGGCA,

- t = GGGCAACA,
- v = AAGGACA.

Then the q-gram profiles of s, t, v are shown on the right.

Notice that the sum of all entries of $P_q(s) = |s| - q + 1 =$ total number of q-gram occurrences in s = number of distinct positions in s where a q-gram starts.

и	$P_q(s)$	$P_q(t)$	$P_q(v)$
AA	0	1	1
AC	1	1	1
AG	1	0	1
AT	0	0	0
CA	2	2	1
CC	0	0	0
CG	0	0	0
CT	0	0	0
GA	0	0	1
GC	1	1	0
GG	2	2	1
GT	0	0	0
TA	0	0	0
TC	0	0	0
TG	0	0	0
TT	0	0	0

q-gram distance

(Introduced by Ukkonen, 1992)

Def.: Given two strings s, t, the *q*-gram distance of s and t is

$$dist_{q-gram}(s,t) = \sum_{u \in \Sigma^q} |N(s,u) - N(t,u)|.$$

Equivalent def.: Given two strings s, t, the *q*-gram distance of s and t is

$$dist_{q-gram}(s,t) = \sum_{i=1}^{\sigma^q} |P_q(s)[i] - P_q(t)[i]|,$$

which is the Manhattan distance¹ of the q-gram profiles of s and t.

¹The Manhattan distance, or L_1 -distance, of two vectors $x, y \in \mathbb{R}^n$ is defined as $\sum_{i=1}^n |x_i - y_i|$.

q-gram distance

In the previous example (q = 2, s = ACAGGGCA, t = GGGCAACA, and v = AAGGACA), we have

1

$$dist_{2-gram}(s,t) = 2$$
, $dist_{2-gram}(s,v) = 5$, and $dist_{2-gram}(t,v) = 5$.

Note that it is possible to have distinct strings with q-gram distance 0, e.g.

for w = AGGGCACA, we have $dist_{2-gram}(s, w) = 0$.

q-gram distance

In the previous example (q = 2, s = ACAGGGCA, t = GGGCAACA, and v = AAGGACA), we have

$$dist_{2-gram}(s,t) = 2$$
, $dist_{2-gram}(s,v) = 5$, and $dist_{2-gram}(t,v) = 5$.

Note that it is possible to have distinct strings with q-gram distance 0, e.g.

for w = AGGGCACA, we have $dist_{2-gram}(s, w) = 0$.

(Don't just believe this, double check it!)

The q-gram distance is a pseudo-metric

Lemma

The q-gram distance is a pseudo-metric, i.e. it is non-negative, symmetric, and obeys the triangle inequality (but it is possible to have $x \neq y$ with $dist_{q-gram}(x, y) = 0$).

Proof:

The three properties follow from the fact that the Manhattan metric is a metric. The example above shows that $dist_{q-gram}(x, y) = 0$ does not imply x = y.

Exercise:

Prove the lemma explicitly.

Connection to edit distance

q-gram Lemma

Let $d_{edit}(s, t)$ denote the (unit-cost) edit distance of s and t. Then

$$rac{{\it dist}_{q-{\it gram}}(s,t)}{2q} \leq d_{{\it edit}}(s,t).$$

Proof

Every edit operation contributes to the q-gram distance at most 2q: Consider the simplest case, a substitution in position i of s, where character s_i is substituted by character x, and let s' be the resulting string. If $q \le i \le |s| - q + 1$, then there are exactly q q-grams of s affected by the substitution: $s_{i-q+1} \dots s_i$, up to $s_i \dots s_{i+q-1}$ (otherwise fewer); the counts of all these are decremented by 1, while the counts of the new q-grams $s_{i-1+1} \dots x$, $s_i \dots xs_{i+q}$, etc. are incremented by 1. Therefore, $dist_{q-gram}(s, s') \le 2q$ (it could be less because these q-grams need not be all distinct). For a deletion, the number of q-grams whose count is decremented is at most q, while those whose count is incremented is at most q - 1; for an insertion the other way around.—The claim follows by induction on the number of edit operations.

Connection to edit distance

Examples

With the earlier examples, we have

- 1. Exchange of two long substrings: $d_{edit}(s, t) = 6$, $d_{edit}(s, w) = 4$ (compare to: $dist_{q-gram}(s, t) = 2$, $dist_{q-gram}(s, w) = 0$, with q = 2).
- The q-gram distance is at most 2q times edit distance (q-gram lemma): d_{edit}(s, v) = 2 (compare to: dist_{q-gram}(s, v) = 5 ≤ 8 = d_{edit}(s, v) · 2q, with q = 2)

Based on the q-gram lemma and the fact that the q-gram distance can be computed in linear time, we can use the q-gram distance as a filter for edit distance computations.

Computation of the q-gram distance

Basic ideas

- Use a sliding window of size q over s and t
- Use an array d_q of size σ^q
- First slide a window over *s*, increment respective entry for every *q*-gram seen
- Then slide over t, decrement respective entry for every q-gram seen

• Now
$$d_q[r] = N(s, u_r) - N(t, u_r)$$
.

• Sum up the absolute values of the entries: $dist_{q-gram}(s,t) = \sum_{i} |d_q[i]|$

We will see: This algorithm runs in linear time.

But: how do we know where to find the entry for the current *q*-gram? This is called ranking (coming soon)

Computation of the q-gram distance

Algorithm for computing q-gram distance **input:** Strings s, t of length |s| = n and |t| = m**output:** $dist_{q-gram}(s,t)$ 1. initialize $d_q[0...\sigma^q - 1]$ with 0s 2. for i = 1, ..., n - q + 1: $r \leftarrow rank(s_i ... s_{i+q-1})$ $d_a[r] \leftarrow d_a[r] + 1$ 3. for i = 1, ..., m - q + 1: $r \leftarrow rank(t_i ... t_{i+a-1})$ $d_a[r] \leftarrow d_a[r] - 1$ 4. $d \leftarrow 0$

5. for $i = 0 \dots \sigma^q - 1$: $d \leftarrow d + |d_q[i]|$.

6. return d

Goal Given q -gram u , we want to know which entry of the array u corresponds to. Ex.: Where is the q -gram CG? In position 6.	r 0 1 2 3 4	Ur AA AC AG AT CA	$d_q(s) = 0$ 1 1 0 2 0
 Ranking functions A ranking function is a bijection rank : Σ^q → [0σ^q - 1]. rank(u) gives us the position of u in the enumeration of Σ^q needs to be very efficiently computable the ranking function we use will give us constant time per q-gram of s 	5 6 7 8 9 10 11 12 13 14 15	CC CG CT GA GC GG GT TA TC TG TT	0 0 0 1 2 0 0 0 0 0

Ranking function

- Basic idea: We will interpret the *q*-gram itself as a number: a number base σ. In our case: σ = 4.
- First, we assign numbers $0, \ldots, \sigma 1$ (here: 0, 1, 2, 3) to the characters:

$$f: \mathtt{A} \mapsto \mathtt{O}, \mathtt{C} \mapsto \mathtt{1}, \mathtt{G} \mapsto \mathtt{2}, \mathtt{T} \mapsto \mathtt{3}$$

- Second, we extend this to strings: e.g. CG becomes $12_4 = 1 \cdot 4^1 + 2 \cdot 4^0 = 6_{10}$. (i.e. 12 in base 4 equals 6 in base 10.)
- In general, for $u = u_1 \dots u_q$, the rank(u) is given by:

$$\mathsf{rank}(u) = f(u_1) \cdot \sigma^{q-1} + f(u_2) \cdot \sigma^{q-2} + \ldots + f(u_{q-1}) \cdot \sigma^1 + f(u_q) \cdot \sigma^0.$$

• E.g. $rank(CATT) = 1 \cdot 4^3 + 0 \cdot 4^2 + 3 \cdot 4 + 3 \cdot 1 = 64 + 0 + 12 + 3 = 79.$

Sliding window

Crucial trick

The rank of the q-gram starting in position i + 1 can be computed from the rank of the q-gram starting in position i in constant time.

Example

Let s = GACATTGACGAT, and let q = 4. Let's compare the rank of CATT and ATTG, two consecutive q-grams:

$$rank(CATT) = 1 \cdot 4^{3} + 0 \cdot 4^{2} + 3 \cdot 4^{1} + 3 \cdot 4^{0}$$

$$rank(ATTG) = 0 \cdot 4^{3} + 3 \cdot 4^{2} + 3 \cdot 4^{1} + 2 \cdot 4^{0}$$

So $1 \cdot 4^3$ has to be subtracted, the rest multiplied by 4, and finally $2 \cdot 4^0 = 2$ added.

Sliding window

In general:

 $\begin{aligned} & rank(s_{i} \dots s_{i+q-1}) &= f(s_{i}) \cdot \sigma^{q-1} + f(s_{i+1}) \cdot \sigma^{q-2} + \dots + f(s_{i+q-1}) \\ & rank(s_{i+1} \dots s_{i+q}) &= f(s_{i+1}) \cdot \sigma^{q-1} + \dots + f(s_{i+q-1}) \cdot \sigma + f(s_{i+q}) \end{aligned}$

Therefore, if $rank(s_i \dots s_{i+q-1}) = C$, then

$$\mathsf{rank}(\mathsf{s}_{i+1}\ldots\mathsf{s}_{i+q}) = (\mathsf{C}-\mathsf{f}(\mathsf{s}_i)\cdot\sigma^{q-1})\cdot\sigma + \mathsf{f}(\mathsf{s}_{i+q})$$

Ex. rank(ATTG) = $(rank(CATT) - 1 \cdot 4^3) \cdot 4 + 2 \cdot 4^0 = (79 - 64) \cdot 4 + 2 = 62$. Double check: rank(ATTG) = $0 \cdot 4^3 + 3 \cdot 4^2 + 3 \cdot 4 + 2 = 48 + 12 + 2 = 62$.

Analysis

- computing the rank of the first q-gram: O(q) time
- computing rank of the (i + 1)st q-gram, given the rank of the *i*th q-gram: constant time

Analysis (cont.)

Computing the q-gram distance of two strings s, t of length n resp. m:

- initialize array d_q : $O(\sigma^q)$ time
- slide window of size q over s: there are n q + 1 windows, for each, we have to compute its rank r and then update the entry $d_q(r)$; rank of first window takes O(q) time, for all following windows O(1), while updating entry is always constant time O(n) time
- slide window of size q over t: similarly, O(m) time
- compute sum of absolute values: $O(\sigma^q)$ time

Thus,

- Total time: $O(n + m + \sigma^q)$
- Total space: $O(\sigma^q)$ (for the array d_q)
- If we choose q ≤ log_σ(n), log_σ(m), then σ^q = O(n + m), so we have linear time and space O(n + m).