Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

String Distance Measures

Two ways of measuring the same thing:

- 1. How similar are two strings?
- 2. How different are two strings?

Two ways of measuring the same thing:

- 1. How similar are two strings?
- 2. How different are two strings?
- 1. Similarity: the higher the value, the closer the two strings.
- 2. Distance: the lower the value, the closer the two strings.

Example

```
s = TATTACTATC
t = CATTAGTATC
```

• percentage of equal positions: $|\{i: s_i = t_i\}| = 8$ out of 10 = 80% s = t if 100% similar, i.e. if highest possible This is called percent similarity in biology.

Example

```
s = TATTACTATC
t = CATTAGTATC
```

- percentage of equal positions: $|\{i: s_i = t_i\}| = 8$ out of 10 = 80% s = t if 100% similar, i.e. if highest possible This is called percent similarity in biology.
- number of different positions: |{i : s_i ≠ t_i}| = 2 (out of 10)
 s = t if 0, i.e. if lowest possible
 This is called Hamming distance of the two strings.

(Note that both are defined only if |s| = |t|.)

Edit operations

• substitution: a becomes b, where $a \neq b$

• deletion: delete character a

• insertion: insert character a

Edit operations

• substitution: a becomes b, where $a \neq b$

• deletion: delete character a

• insertion: insert character a

One often views alignments in this way: thinking about the changes that happened turning one string into the other (evolution, typos, ...). E.g.

ACCT CACT

Edit operations

- substitution: a becomes b, where $a \neq b$
- deletion: delete character a
- insertion: insert character a

One often views alignments in this way: thinking about the changes that happened turning one string into the other (evolution, typos, ...). E.g.

ACCT CACT

2 substitutions

Edit operations

• substitution: a becomes b, where $a \neq b$

deletion: delete character a

• insertion: insert character a

One often views alignments in this way: thinking about the changes that happened turning one string into the other (evolution, typos, ...). E.g.

ACCT ACCT-CACT --CACT

2 substitutions

Edit operations

- substitution: a becomes b, where $a \neq b$
- deletion: delete character a
- insertion: insert character a

ACCT	ACCT
CACT	CACT
2 substitutions	2 deletions, 1 substition,
	2 insertions

Edit operations

- substitution: a becomes b, where $a \neq b$
- deletion: delete character a
- insertion: insert character a

ACCT	ACCT	-ACCT
CACT	CACT	CA-CT
2 substitutions	2 deletions,	
	1 substition,	
	2 insertions	

Edit operations

- substitution: a becomes b, where $a \neq b$
- deletion: delete character a
- insertion: insert character a

ACCT	ACCT	-ACCT
CACT	CACT	CA-CT
2 substitutions	2 deletions,	1 insertion,
	1 substition,	1 deletion
	2 insertions	

(Unit cost) edit distance, also called Levenshtein distance (Levenshtein, 1965).

Definition

The edit distance $d_{edit}(s, t)$ is the minimum number of edit operations needed to transform s into t.

Example

$$s = TACAT, t = TGATAT$$

(Unit cost) edit distance, also called Levenshtein distance (Levenshtein, 1965).

Definition

The edit distance $d_{edit}(s, t)$ is the minimum number of edit operations needed to transform s into t.

Example

$$s = TACAT, t = TGATAT$$

• TACAT $\overset{\text{subst}}{\to}$ GACAT $\overset{\text{del}}{\to}$ GAAT $\overset{\text{ins}}{\to}$ TGAAT $\overset{\text{ins}}{\to}$ TGATAT 4 edit op's

(Unit cost) edit distance, also called Levenshtein distance (Levenshtein, 1965).

Definition

The edit distance $d_{edit}(s, t)$ is the minimum number of edit operations needed to transform s into t.

Example

```
s = TACAT, t = TGATAT
```

- TACAT $\overset{\text{subst}}{\to}$ GACAT $\overset{\text{del}}{\to}$ GAAT $\overset{\text{ins}}{\to}$ TGAAT $\overset{\text{ins}}{\to}$ TGATAT 4 edit op's
- TACAT $\stackrel{\text{ins}}{\rightarrow}$ TGACAT $\stackrel{\text{subst}}{\rightarrow}$ TGATAT 2 edit op's

(Unit cost) edit distance, also called Levenshtein distance (Levenshtein, 1965).

Definition

The edit distance $d_{edit}(s, t)$ is the minimum number of edit operations needed to transform s into t.

Example

$$s = TACAT, t = TGATAT$$

- TACAT $\overset{\text{subst}}{\to}$ GACAT $\overset{\text{del}}{\to}$ GAAT $\overset{\text{ins}}{\to}$ TGAAT $\overset{\text{ins}}{\to}$ TGATAT 4 edit op's
- TACAT $\stackrel{\text{ins}}{\rightarrow}$ TGACAT $\stackrel{\text{subst}}{\rightarrow}$ TGATAT 2 edit op's
- TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGAGAT $\overset{\text{subst}}{\rightarrow}$ TGATAT 3 edit op's

Minimum length series of edit operations

We are looking for a series of operations of $minimum\ length\ (=shortest)$:

$$\textit{d}_{\textit{edit}}(s,t) = \min\{|\mathcal{S}| \ : \ \mathcal{S} \ \text{is a series of operations transforming } s \ \text{into} \ t\}$$

N.B.

There may be more than one series of op's of minimum length, but the length is unique.

Exercises on edit distance

Exercises

- If t is a substring of s, then what is $d_{edit}(s, t)$?
- What is $d_{edit}(s, \epsilon)$?
- If we can transform s into t by using only deletions, then what can we say about s and t?
- If we can transform s into t by using only substitutions, then what can we say about s and t?
- If we can transform s into t with k edit operations, then what can we say about $d_{edit}(s,t)$?

What is a distance?

The mathematical formalization of distance is metric:

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

1.
$$d(x,y) \ge 0$$
, and $(d(x,y) = 0 \Leftrightarrow x = y)$ (non-negative, identity of indiscernibles)

2.
$$d(x, y) = d(y, x)$$

(symmetric)

3.
$$d(x,y) \le d(x,z) + d(z,y)$$

(triangle inequality)

What is a distance?

The mathematical formalization of distance is metric:

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

1.
$$d(x,y) \ge 0$$
, and $(d(x,y) = 0 \Leftrightarrow x = y)$ (non-negative, identity of indiscernibles)

2.
$$d(x,y) = d(y,x)$$
 (symmetric)

3.
$$d(x,y) \le d(x,z) + d(z,y)$$
 (triangle inequality)

Examples

- Euclidean distance on \mathbb{R}^2 : $d(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$ where $x = (x_1, x_2), y = (y_1, y_2)$
- Manhattan distance on \mathbb{R}^2 : $d(x,y) = |x_1 y_1| + |x_2 y_2|$
- Hamming distance on Σ^n : $d_H(s,t) = \{i : s_i \neq t_i\}$.

The edit distance is a metric

Claim: The edit distance is a metric.

Proof: Let $s, t, u \in \Sigma^*$ (strings over Σ):

- 1. $d_{edit}(s,t) \ge 0$: to transform s to t, we need 0 or more edit op's. Also, we can transform s into t with 0 edit op's if and only if s = t.
- 2. Since every edit operation can be inverted, we get $d_{edit}(s,t) = d_{edit}(t,s)$.
- 3. (by contradiction) Assume that $d_{edit}(s,u) + d_{edit}(u,t) < d_{edit}(s,t)$, and $\mathcal S$ transforms s into u in dist(s,u) steps, and $\mathcal S'$ transforms u into t in $d_{edit}(u,t)$ steps. Then the series of op's $\mathcal S' \circ \mathcal S$ (first $\mathcal S$, then $\mathcal S'$) transforms s into t, but is shorter than $d_{edit}(s,t)$, a contradiction to the definition of d_{edit} .

The edit distance is a metric

Claim: The edit distance is a metric.

Proof: Let $s, t, u \in \Sigma^*$ (strings over Σ):

- 1. $d_{edit}(s,t) \ge 0$: to transform s to t, we need 0 or more edit op's. Also, we can transform s into t with 0 edit op's if and only if s = t.
- 2. Since every edit operation can be inverted, we get $d_{edit}(s,t) = d_{edit}(t,s)$.
- 3. (by contradiction) Assume that $d_{edit}(s,u) + d_{edit}(u,t) < d_{edit}(s,t)$, and $\mathcal S$ transforms s into u in dist(s,u) steps, and $\mathcal S'$ transforms u into t in $d_{edit}(u,t)$ steps. Then the series of op's $\mathcal S' \circ \mathcal S$ (first $\mathcal S$, then $\mathcal S'$) transforms s into t, but is shorter than $d_{edit}(s,t)$, a contradiction to the definition of d_{edit} .

Exercise: Show that the Hamming distance is a metric.

Every alignment corresponds to a series of edit operations:

- match \mapsto do nothing
- mismatch → substitution
- gap below → deletion
- gap on top → insertion

Example

T-ACAT-

_ ----

Every alignment corresponds to a series of edit operations:

- match \mapsto do nothing
- mismatch → substitution
- gap below → deletion
- gap on top → insertion

Example

```
T-ACAT-
TGAT-AT
```

 $\mathsf{TACAT} \overset{\mathsf{ins}}{\to} \mathsf{TGACAT} \overset{\mathsf{subst}}{\to} \mathsf{TGATAT} \overset{\mathsf{del}}{\to} \mathsf{TGATAT} \overset{\mathsf{subst}}{\to} \mathsf{TGATA} \overset{\mathsf{ins}}{\to} \mathsf{TGATAT}$

Every alignment corresponds to a series of edit operations:

- match \mapsto do nothing
- mismatch → substitution
- gap below → deletion
- gap on top → insertion

Example

```
T-ACAT-
TGAT-AT
```

```
TACAT \overset{\text{ins}}{\to} TGACAT \overset{\text{subst}}{\to} TGATAT \overset{\text{del}}{\to} TGATAT \overset{\text{subst}}{\to} TGATAT (By convention, we apply the edit operations from left to right.)
```

Not every series of operations corresponds to an alignment:

• TACAT $\overset{\text{subst}}{\rightarrow}$ GACAT $\overset{\text{del}}{\rightarrow}$ GAAT $\overset{\text{ins}}{\rightarrow}$ TGAAT $\overset{\text{ins}}{\rightarrow}$ TGATAT

• TACAT $\stackrel{\text{ins}}{\rightarrow}$ TGACAT $\stackrel{\text{subst}}{\rightarrow}$ TGATAT

 $\bullet \ \mathsf{TACAT} \stackrel{\mathsf{ins}}{\to} \mathsf{TGACAT} \stackrel{\mathsf{subst}}{\to} \mathsf{TGAGAT} \stackrel{\mathsf{subst}}{\to} \mathsf{TGATAT}$

Not every series of operations corresponds to an alignment:

$$\bullet \ \ \mathsf{TACAT} \overset{\mathsf{subst}}{\to} \ \ \mathsf{GACAT} \overset{\mathsf{del}}{\to} \ \ \mathsf{GAAT} \overset{\mathsf{ins}}{\to} \ \ \mathsf{TGAAT} \overset{\mathsf{ins}}{\to} \ \ \mathsf{TGATAT} \qquad \overset{-\mathsf{TAC-AT}}{\mathsf{TGA-TAT}}$$

• TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

• TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGAGAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

Not every series of operations corresponds to an alignment:

$$\bullet \ \mathsf{TACAT} \stackrel{\mathsf{subst}}{\to} \ \mathsf{GACAT} \stackrel{\mathsf{del}}{\to} \ \mathsf{GAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGATAT}$$

-TAC-AT TGA-TAT

• TACAT $\stackrel{\text{ins}}{\rightarrow}$ TGACAT $\stackrel{\text{subst}}{\rightarrow}$ TGATAT

T-ACAT TGATAT

• TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGAGAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

Not every series of operations corresponds to an alignment:

$$\bullet \ \mathsf{TACAT} \stackrel{\mathsf{subst}}{\to} \ \mathsf{GACAT} \stackrel{\mathsf{del}}{\to} \ \mathsf{GAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGATAT}$$

-TAC-AT TGA-TAT

• TACAT $\stackrel{\text{ins}}{\rightarrow}$ TGACAT $\stackrel{\text{subst}}{\rightarrow}$ TGATAT

T-ACAT TGATAT

• TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGAGAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

???

Fact

Every minimum-length series of operations corresponds to an alignment.

Proof (sketch):

Show that in a minimum-length series of edit operations, each position of each string is involved in at most one operation.

Take the following scoring function: match = 0, mismatch = -1, gap = -1. If alignment \mathcal{A} corresponds to the series of operations \mathcal{S} , then:

$$\mathsf{score}(\mathcal{A}) = -|\mathcal{S}|$$

where $|\mathcal{S}| = \text{no. of operations in } \mathcal{S}$.

Example

• TACAT $\overset{\text{subst}}{\rightarrow}$ GACAT $\overset{\text{del}}{\rightarrow}$ GAAT $\overset{\text{ins}}{\rightarrow}$ TGAAT $\overset{\text{ins}}{\rightarrow}$ TGATAT

-TAC-AT

• TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

T-ACAT TGATAT

Optimal alignment score vs. edit distance

Theorem

With the scoring function:

match = 0, mismatch = -1, gap = -1, we have:

$$sim(s,t) = -d_{edit}(s,t).$$

Moreover, we get the same optimal alignments / minimum-length series of edit operations.

(This seems obvious but it actually needs to be proved. Formal proof see Setubal & Meidanis book, Sec. 3.6.1.)

Note first that we can assume that (a) edit operations happen left-to-right, and (b) every character is involved in at most one edit operation. For computing an optimal alignment, we consider what happens to the last characters. Then transforming s into t can be done in one of 3 ways:

1. transform $s_1 ldots s_{n-1}$ into t and then delete last character of s

Note first that we can assume that (a) edit operations happen left-to-right, and (b) every character is involved in at most one edit operation. For computing an optimal alignment, we consider what happens to the last characters. Then transforming s into t can be done in one of 3 ways:

- 1. transform $s_1 ldots s_{n-1}$ into t and then delete last character of s
- 2. if $s_n=t_m$: transform $s_1\dots s_{n-1}$ into $t_1\dots t_{m-1}$ if $s_n\neq t_m$: transform $s_1\dots s_{n-1}$ into $1_1\dots t_{m-1}$ and substitute s_n with t_m

Note first that we can assume that (a) edit operations happen left-to-right, and (b) every character is involved in at most one edit operation. For computing an optimal alignment, we consider what happens to the last characters. Then transforming s into t can be done in one of 3 ways:

- 1. transform $s_1 ldots s_{n-1}$ into t and then delete last character of s
- 2. if $s_n=t_m$: transform $s_1\dots s_{n-1}$ into $t_1\dots t_{m-1}$ if $s_n\neq t_m$: transform $s_1\dots s_{n-1}$ into $1_1\dots t_{m-1}$ and substitute s_n with t_m
- 3. transform s into $t_1 ldots t_{m-1}$ and insert t_m

Note first that we can assume that (a) edit operations happen left-to-right, and (b) every character is involved in at most one edit operation. For computing an optimal alignment, we consider what happens to the last characters. Then transforming s into t can be done in one of 3 ways:

- 1. transform $s_1 ldots s_{n-1}$ into t and then delete last character of s
- 2. if $s_n=t_m$: transform $s_1\dots s_{n-1}$ into $t_1\dots t_{m-1}$ if $s_n\neq t_m$: transform $s_1\dots s_{n-1}$ into $1_1\dots t_{m-1}$ and substitute s_n with t_m
- 3. transform s into $t_1 \dots t_{m-1}$ and insert t_m

So again we can use Dynamic Programming!

We will need a DP-table (matrix) E of size $(n+1) \times (m+1)$ (where n = |s| and m = |t|).

Definition:
$$E(i,j) = d_{edit}(s_1 \dots s_i, t_1 \dots t_j)$$

Computation of E(i,j):

- Fill in first row and column: E(0,j) = j and E(i,0) = i
- for i, j > 0: now E(i, j) is the minimum of 3 entries plus 1 (top and left) or plus 0/plus 1, depending on whether current chars are the same or different
- return entry on bottom right E(n, m)
- backtrace for a shortest series of edit operations

Algorithm for computing the edit distance

```
Algorithm DP algorithm for edit distance
Input: strings s, t, with |s| = n, |t| = m
Output: value d_{edit}(s,t)
      for j = 0 to m do E(0, j) \leftarrow j;
     for i = 1 to n do E(i, 0) \leftarrow i;
3. for i = 1 to n do
                 for j = 1 to m do
                E(i,j) \leftarrow \min egin{cases} E(i-1,j)+1 \ E(i-1,j-1) & 	ext{if } s_i = t_j \ E(i-1,j-1)+1 & 	ext{if } s_i 
eq t_j \ E(i,j-1)+1 \end{cases}
      return E(n, m);
```

Analysis

- Space: O(nm) for the DP-table
- Time:
 - computing $d_{edit}(s, t)$: $3nm + n + m + 1 \in O(nm)$ (resp. $O(n^2)$ if n = m)
 - finding an optimal series of edit op's: O(n + m) (resp. O(n) if n = m)

General cost function

General cost edit distance

Different edit operations can have different cost (but some conditions must hold, e.g. cost(insert) = cost(delete), why?).

Computable with same algorithm in same time and space.

Given two strings s and t,

$$LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$$

is the length of a longest common subsequence of s and t.

Example

Let $s = \mathsf{TACAT}$ and $t = \mathsf{TGATAT}$

Given two strings s and t,

$$LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$$

is the length of a longest common subsequence of s and t.

Example

```
Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4.

s = TACAT, t = TGATAT
```

Given two strings s and t,

$$LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$$

is the length of a longest common subsequence of s and t.

Example

Let
$$s = TACAT$$
 and $t = TGATAT$, then we have $LCS(s, t) = 4$.
 $s = TACAT$, $t = TGATAT$

LCS-distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

Given two strings s and t,

$$LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$$

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4. s = TACAT, t = TGATAT

LCS-distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

Example

We have $d_{LCS}(s, t) = 5 + 6 - 2 \cdot 4 = 3$.

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

N.B.

There may be more than one longest common subsequence, but the *length* LCS(s,t) is unique! E.g. s'=TAACAT, t'=ATCTA, then LCS(s',t')=3, and ACA, TCA, TCT, ACT are all longest common subsequences.

LCS distance

In the example above, we have $d_{LCS}(s', t') = 6 + 5 - 2 \cdot 3 = 5$.

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

N.B.

There may be more than one longest common subsequence, but the *length* LCS(s,t) is unique! E.g. s'=TAACAT, t'=ATCTA, then LCS(s',t')=3, and ACA, TCA, TCT, ACT are all longest common subsequences.

LCS distance

In the example above, we have $d_{LCS}(s', t') = 6 + 5 - 2 \cdot 3 = 5$.

Exercise

(1) Prove that d_{LCS} is a metric. (2) Find a DP-algorithm that computes LCS(s,t).