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Character data

Now the input data consists of states of characters for the given objects,
e.g.

• morphological data, e.g. number of toes, reproductive method, type
of hip bone, . . . or

• molecular data, e.g. what is the nucletoide in a certain position.
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Character data

Example

C1 : # wheels C2 : existence of engine

bicycle 2 0
motorcycle 2 1
car 4 1
tricycle 3 0

• objects (species): Bicycle, motorcycle, tricycle, car

• characters: number of wheels; existence of an engine

• character states: 2, 3, 4 for C1;
0, 1 for C2 (1 = YES, 0 = NO)

• This matrix M is called a character-state-matrix, of dimension (n ×m),

where for 1 ≤ i ≤ n, 1 ≤ j ≤ m: Mij = state of character j for object i .

(Here: n = 4,m = 2.)

4 / 21



Character data

01

bicycle cartricyclemotorcycle

invention of engine

(a)

2 2 3 4

number of
wheels

(b)

motorcycle car bicycletricycle
0011

0

Two different phylogenetic trees for the same set of objects.
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Character data

We want to avoid

• parallel evolution (= convergence)

• reversals

Together these two conditions are also called homoplasies.

Mathematical formulation: compatibility.
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Compatibility

Definition
A character is compatible with a tree if all inner nodes of the tree can be
labeled such that each character state induces one connected subtree.
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This tree is compatible with C2, one possibility of labeling the inner nodes
is shown.
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Perfect Phylogeny

Definition
A tree T is called a perfect phylogeny (PP) for C if all characters C ∈ C
are compatible with T .

Example

AA AC CC CG GG
alpha beta gamma delta epsilon

Why? We have to find a labeling of the inner nodes s.t. for both characters C1

and C2, each state induces a subtree.
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Perfect Phylogeny

Definition
A tree T is called a perfect phylogeny (PP) if all characters are compatible
with T .

Example

AA AC CC CG GG
alpha beta gamma delta epsilon

AC
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Note: Our first tree for the vehicles was also a PP. (Proof?)
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Perfect Phylogeny

• Ideally, we would like to find a PP for our input data.

• For binary characters, there is an efficient algorithm for deciding
whether a PP exists. (Gusfield’s algorithm, see lecture)

• Deciding in general whether a PP exists is NP-hard. (More precisely:
For characters with number of states ≥ 4, the PP problem is
NP-hard.)

• Doesn’t really matter, since most of the time, no PP exists anyway.
Why: due to homoplasies; because our input data has errors; our
evolutionary model may not be adequate; and, and, and . . .

• Therefore we usually want to find a best possible tree.
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Compatibility and Parsimony

What is a best possible tree?

Two possibilities:

• Compatibility: what is the largest subset of the characters such that a
PP exists? - This means ignoring part of the input data.

• Parsimony: If we want to keep our input data, then what is the
smallest number of changes that have to be made along the edges?
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Parsimony

Parsimony: What is a best possible tree?

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG

Why is this tree “perfect”?
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Parsimony
What is a best possible tree?

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG1

1

1

1

Why is this tree “perfect”?

Because it has few changes of states!
In red, we marked the edges where there are state changes (an evolutionary event

happened), and how many (in this case, always 1).
13 / 21



Parsimony

Definition
The parsimony cost of a phylogenetic tree with labeled inner nodes is the
number of state changes along the edges (i.e. the sum of the edge costs,
where the cost of an edge = number of characters whose state differs
between child and parent).

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG1

1

1

1

The parsimony cost of this labeled tree is 4.
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Parsimony

Definition
The parsimony cost of a phylogenetic tree (without labels on the inner
nodes) is the minimum of the parsimony cost over all possible labelings of
the inner nodes.

AA AC CC CG GG
alpha beta gamma delta epsilon

The parsimony cost of this tree is 4, because the best labeling has cost 4.
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Parsimony

Phylogenetic Reconstruction with Character Data

Given a character-state matrix M, our goal is to find a phylogenetic tree
which minimizes the parsimony cost.

We split the problem into two sub-problems:

1. Small Parsimony: Given a phylogenetic tree, find its parsimony cost,
i.e. find a most parsimonious labeling of the inner nodes. This
problem can be solved efficiently.

2. Large Parsimony or Maximum Parsimony: Find a tree with minimum
parsimony cost. This problem is NP-hard.
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Small Parsimony

Small Parsimony Problem

Given: a phylogenetic tree T with character-states at the nodes.
Find: a labeling of the inner nodes with states with minimum parsimony
cost.

Algorithm

This problem can be solved using Fitch’ algorithm, which runs in time
O(nmr), where n = number of species, m = number of characters, and
r = maximum number of states over all characters.
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Maximum Parsimony

Maximum Parsimony Problem

The maximum parsimony problem is, given a character-state matrix, find a
phylogenetic tree with lowest parsimony cost (= a “most parsimonious
tree”).

• When a PP exists, then it is also the most parsimonious tree.

• In general, this problem is NP-hard.
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Algorithms for Maximum Parsimony

• Since problem NP-hard, we cannot hope to find an algorithm that
solves it efficiently.

• We have seen the following algorithms for this problem:

1. Greedy Sequential Addition Algorithm - heuristic algorithm: guaranteed
polynomial running time but no guarantee on the quality of the solution
(may or may not be correct, i.e. may or may not output the best tree)

2. Branch-and-Bound for Parsimony - running time heuristic: guarantee
on exact solution, but no guarantee on the running time (may or may
not be fast)

3. Nearest Neighbor Interchange - a local optimization algorithm (also a
heuristic algorithm, but guarantees to output a local optimum)
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Summary for character data

• When the input is a character-state matrix, then we would like to find
a tree which is compatible with each character.

• Such a tree is called a perfect phylogeny (PP).

• PPP can be solved efficiently for binary characters, is NP-hard for
number of states ≥ 4.

• Usually, no PP exists, therefore in general . . .

• We are looking for a most parsimonious tree (a tree with lowest
parsimony cost).

• The parsimony cost is defined as the minimum number of the state
changes on the edges over all possible labelings of the inner nodes.

• Recall: There are super-exponentially many trees on n taxa (both
rooted and unrooted), so we cannot try them all.
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Summary for character data (cont’ed)

• recall: We are looking for a a most parsimonious tree (a tree with
lowest parsimony cost).

• Problem is split into Small Parsimony and Maximum Parsimony.

• Small Parsimony can be solved efficienly, e.g. by Fitch’ algorithm.

• Maximum Parsimony is NP-hard, so probably no efficient algorithms
exist.

• We saw three algorithms for Maximum Parsimony: one heuristic
(Greedy Seq. Addition Algo.) and one exact algorithm which is a
running time heuristic (Branch-and-Bound for Parsimony), and a local
optimization algorithm (Nearest Neighbor Interchange).
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