Bioinformatics Algorithms

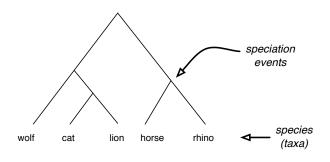
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

Phylogenetics I

What is a phylogenetic tree?



Phylogenetic trees display the evolutionary relationships among a set of objects (species). Contemporary species are represented by the leaves. Internal nodes of the tree represent speciation events (\approx common ancestors, usually extinct).

Different types of phylogenetic trees

- rooted vs. unrooted (root on top/bottom vs. root in the middle)
- binary (fully resolved) vs. multifurcating (polytomies)
- are edge lengths significant?
- is there a time scale on the side?

Phylogenetic reconstruction

Goal

Given n objects and data on these objects, find a phylogenetic tree with these objects at the leaves which best reflects the input data.

Phylogenetic reconstruction

Note:

We need to define more precisely

- what kind of input data we have,
- what kind of tree we want (e.g. rooted or unrooted), and
- what we mean by "reflect the data."

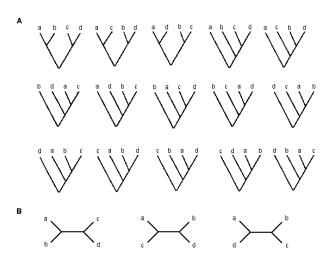
Phylogenetic reconstruction

There are two main issues:

- 1. How well does a tree reflect my data?
- 2. How do we find such a tree?

Say we have answered these questions, then: Could we just list all possible trees and then choose the/a best one?

# taxa	# unrooted trees	# rooted trees
n	(2n-5)!!	(2n-3)!!
1	1	1
2	1	1
3	1	3
4	3	15



All phylogenetic trees (rooted and unrooted) on 4 taxa.

Theorem

There are $U_n=(2n-5)!!=\prod_{i=3}^n(2i-5)$ unrooted binary phylogenetic trees on n objects, and $R_n=(2n-3)!!=\prod_{i=2}^n(2i-3)$ rooted binary phylogenetic trees on n objects.

Proof

By induction on n, using that (1) we can get every unrooted tree on n+1 objects in a unique way by adding the (n+1)st leaf to an unrooted tree on the first n objects; (2) an unrooted binary tree with n leaves has 2n-3 edges, (3) every unrooted tree on n objects can be rooted in (number of edges) ways, yielding a rooted tree on n objects.

#taxa	#unrooted trees	#rooted trees
n	(2n-5)!!	(2n-3)!!
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10, 395
8	10, 395	135, 135
9	135, 135	2, 027, 025
10	2,027,025	34,459,425

So there are super-exponentially many trees: We cannot check all of them!

Types of input data

We can have two kinds of input data:

- distance data: $n \times n$ matrix of pairwise distances between the taxa, or
- character data: n × m matrix giving the states of m characters for the n taxa

Distance data

Distance data is given as an $(n \times n)$ matrix M with the pairwise distances between the taxa.

Ex.				
		b		
а	0	5 0	2	
b	5	0	4	
С	2	4		

E.g., $M_{a,b} = 5$ means that the distance between a and b is 5. Often, this is the edit distance (between two genomic sequences, or between homologous proteins, . . .).

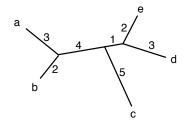
We want to find a tree with a, b, c at the leaves s.t. the distance in the tree (the path metric) between a and b is 5, between a and c is 2, etc.

Distance data

Path metric of a tree

Given a tree T, the path-metric of T is d_T , defined as: $d_T(u, v) = \text{sum of edge weights on the (unique) path between } u$ and v.

Example



$$d_T(a, b) = 5,$$

 $d_T(a, d) = 11,$
 $d_T(c, d) = 9, ...$

Note

 $d_{\mathcal{T}}(u,v)$ is also defined for inner nodes u,v, but we only need it for leaves.

For our earlier example, we can find such a tree:

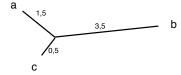
Ex. 1 (from before)

		b	
а	0	5	2
b	0 5 2	0	4
с	2	4	0

For our earlier example, we can find such a tree:

Ex. 1 (from before)

	a		
а	0	5	2
b	0 5 2	0	4
С	2	4	0



Question

Is it always possible to find a tree s.t. its path-metric equals the input distances? I.e. does such a tree exist for any input matrix M?

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

•
$$M(x,y) \ge 0$$
 and $(M(x,y) = 0$ iff $x = y)$ (positive definite)

$$M(x,y) = M(y,x)$$

(symmetry)

•
$$M(x, y) + M(y, z) \ge M(x, z)$$

(triangle inequality)

For example, the edit distance is a metric (on strings), the Hamming distance (on strings of the same length), the Euclidean distance (on \mathbb{R}^2).

Conditions on distance matrix

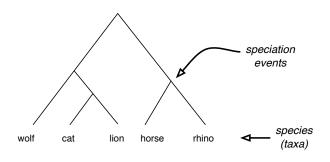
Question:

When does a tree exist whose path metric agrees with a distance matrix *M*?

Answer:

- if we want a rooted tree: M needs to be ultrametric
- if we want an unrooted tree: M needs to be additive

Rooted trees and the molecular clock



In a rooted phylogenetic tree, the molecular clock assumption holds: that the speed of evolution is the same along all branches, i.e. the path distance from each leaf to the root is the same. Such a tree is also called an ultrametric tree.

Ultrametrics and the three-point condition

Three point condition

Let d be a metric on a set of objects O, then d is an ultrametric if $\forall x, y, z \in O$:

$$d(x,y) \le \max\{d(x,z),d(z,y)\}$$

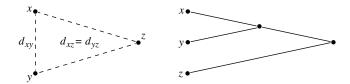
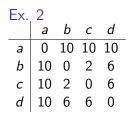
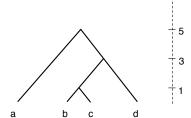


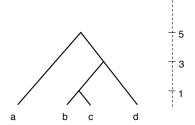
Figure: Three point condition. It implies that the path metric of a rooted tree is an ultrametric.

In other words, among the three distances, there is no unique maximum.





Ex.	2			
	a	b	С	d
а	0	10	10	10
b	10	0	2	6
С	10	2	0	6
d	0 10 10 10	6	6	0



Checking the ultrametric condition, we see that:

- for a, b, c we get 2, 10, 10 okay
- for a, b, d we get 6, 10, 10 okay
- for a, c, d we get 6, 10, 10 okay
- for b, c, d we get 2, 6, 6 okay

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex. 1 (from before)

	_	ί	• • • • •
	a	b	С
а	0	5	2
b	0 5 2	0	4
С	2	4	0
	l.		

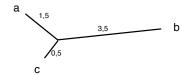
For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex. 1 (from before) | a b c | | a 0 5 2 | | b 5 0 4 | | c 2 4 0

For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.

Indeed, the only tree we found was not rooted:



Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique¹.

¹i.e. there is only one such tree

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique¹.

Algorithm

The algorithm UPGMA (unweighted pair group mtheod using arithmetic averages, Michener & Sokal 1957), a hierarchical clustering algorithm, constructs this tree, given an input matrix which is ultrametric. Its running time is $O(n^2)$.

¹i.e. there is only one such tree

Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees? Four point condition.

Let d be a metric on a set of objects O, then d is an additive metric if $\forall x, y, u, v \in O$:

$$d(x,y) + d(u,v) \le \max\{d(x,u) + d(y,v), d(x,v) + d(y,u)\}$$

In other words, among the three sums of two distances, there is no unique maximum.

Additive metrics and the four-point condition

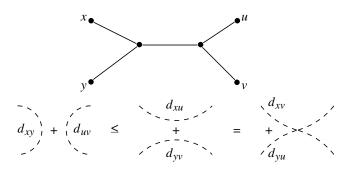
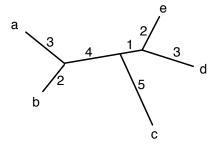


Figure: The four point condition. It implies that the path metric of a tree is an additive metric.



For ex., choose these 4 points: a,b,c,e. Then we get the three sums: d(a,b)+d(c,e)=5+8=13, d(a,c)+d(b,e)=12+9=21, and d(a,e)+d(b,c)=10+11=21. Among 13,21,21, there is no unique maximum—okay. (Careful, this has to hold for all quadruples; how many are there?)

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Algorithm

The algorithm NJ (Neighbor Joining) constructs this tree, given an additive matrix M (Saitu & Nei, 1987). Its running time is $O(n^3)$.

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Algorithm

The algorithm NJ (Neighbor Joining) constructs this tree, given an additive matrix M (Saitu & Nei, 1987). Its running time is $O(n^3)$.

In fact, it is even possible to compute a "good" tree if the matrix is not additive but "almost" (all this needs to be defined precisely, of course).

• When the input is a distance matrix, then we are looking for a tree whose path metric agrees with M.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with M exists if and only if the distance matrix M defines an ultrametric.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with M exists if and only if the distance matrix M defines an ultrametric.
- This tree can then be computed efficiently (i.e. in polynomial time), with UPGMA.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with M exists if and only if the distance matrix M defines an ultrametric.
- This tree can then be computed efficiently (i.e. in polynomial time), with UPGMA.
- An unrooted tree agreeing with M exists if and only if the distance matrix M defines an additive metric.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with M exists if and only if the distance matrix M defines an ultrametric.
- This tree can then be computed efficiently (i.e. in polynomial time), with UPGMA.
- An unrooted tree agreeing with M exists if and only if the distance matrix M defines an additive metric.
- It can be computed efficiently (i.e. in polynomial time), with Neighbor Joining.