
Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics

academic year 2017/18, spring term

Pairwise Alignment 3

Optimal pairwise alignment in linear space

2 / 9

Given two sequences s, t of length n:

• DP algorithm for global alignment: O(n2) time and space

• if we only want the score of an optimal alignment sim(s, t) (problem
variant 1), then we can do this in O(n2) time and O(n) space
(space-saving variant)

• But that algo does not give us the optimal alignment itself
(problem variant 2)

• Now: algorithm for computing an optimal alignment itself
in time O(n2) but space O(n)

There are several algorithms achieving this, e.g. Hirschberg (1975) aka
Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the
book by Durbin, Eddy, Krogh, Mitchison (ch. 2.6).

3 / 9

s = GAAGA, t = CACA match: 2, mismatch: -1, gap: -1

D(i , j) C A C A
0 1 2 3 4

0 0 �1 �2 �3 �4

G 1 �1 �1 �2 �3 �4

A 2 �2 �2 1 0 �1

A 3 �3 �3 0 0 2

G 4 �4 �4 �1 �1 1

A 5 �5 �5 �2 �2 1

The optimal
alignments are:

1.
�
GAAGA
-CACA

�

2.
�
GAAGA
CA-CA

�

3.
�
GAAGA
C-ACA

�

4.
�
GAAGA
CAC-A

�

4 / 9

Consider the first optimal alignment
�
GAAGA
-CACA

�
:

Idea: Divide-and-conquer

We divide the two sequences s, t in two parts, left and right, align left with
left, right with right, and then concatenate the two alignments:

GAAGA
CACA

GAA
CA

GA
CA

GA
C

A
A

G
C

A
A

GAAGA
-CACA

GAA
-CA

GA
CA

GA
-C

A
A

G
C

A
A() (((

((

(

)))

))

)

top-down: split sequences into two bottom-up: concatenate alignments

Question
But how do we know where to divide them?

5 / 9

Consider the first optimal alignment
�
GAAGA
-CACA

�
:

Idea: Divide-and-conquer

We divide the two sequences s, t in two parts, left and right, align left with
left, right with right, and then concatenate the two alignments:

GAAGA
CACA

GAA
CA

GA
CA

GA
C

A
A

G
C

A
A

GAAGA
-CACA

GAA
-CA

GA
CA

GA
-C

A
A

G
C

A
A() (((

((

(

)))

))

)

top-down: split sequences into two bottom-up: concatenate alignments

Question
But how do we know where to divide them?

5 / 9

Definition
A cut is a pair of positions (n0,m0), where 1 n0 n, and 1 m0 m
(with |s| = n, |t| = m).

1. In sequence 1, we will always take the middle cut position n0 = dn/2e.
2. In sequence 2, we will remember where the middle row n0 = dn/2e

was crossed.

3. For this, we will need to compute another matrix M (again, in
space-saving manner!).

6 / 9

Matrix M

• Cell M(i , j) contains, where i � n0, an index r s.t. there is an optimal
alignment with score D(i , j) passing through cell (n0, r).

• Computation:
M(n0, j) = j for all j = 1, . . . ,m;
for i > n0, 0 j m: M(i , j) = M(i 0, j 0), where D(i , j) derives from
cell (i 0, j 0) (therefore (i 0, j 0) 2 {(i � 1, j), (i � 1, j � 1), (i , j � 1)})
– if there is more than one, then choose one acc. to priority (e.g.
left-diag-top)

• Then M(n,m) = r s.t. there is an optimal alignment of s and t which
passes through cell (dn/2e, r).

• Thus, we can use the cut (n0, r) = (dn/2e,M(n,m)) in the divide-step
and recurse with s

1

. . . sn0 and t
1

. . . tr on the left, and sn0+1

. . . sn and
tr+1

. . . tm on the right.

7 / 9

Algorithm PWA(s,t)

1. if max(|s|, |t|) 2, then return an optimal alignment computed with
N-W-algorithm

2. else

3. compute DP-table D row-wise, and

4. from i = dn/2e on, compute also matrix M (row-wise)

5. return PWA(s
1

. . . sdn/2e, t1 . . . tr) concatenated
with PWA(sdn/2e+1

. . . sn, tr+1

. . . tm).

(for a detailed example, see class notes)

8 / 9

Analysis

• Space: Since all matrix computations are row-wise, they all need
linear space in m, and none need to be stored, thus O(m); we need to
store the partial alignments, whose total length is the length of the
final alignment, thus O(n +m): altogether space O(n +m)

• Time: In each iteration, we are exactly halving the problem size
(wherever we cut t, string s is always cut in the middle), thus we get:

nm +
1

2
nm +

1

4
nm + . . . nm

1X

k=1

1

2k
= 2nm 2 O(nm).

Thus we doubled the time (asymptotically the same, both O(nm)), but
reduced the space from quadratic to linear.

9 / 9

