Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak Optimal pairwise alignment in linear space

Masters in Medical Bioinformatics
academic year 2017/18, spring term

Pairwise Alignment 3

Given two sequences s, t of Iength n: s = GAAGA, t = CACA match: 2, mismatch: -1, gap: -1
o DP algorithm for global alignment: O(n?) time and space
e if we only want the score of an optimal alignment sim(s, t) (problem D(i.J) ¢ A ¢ A
variant 1), then we can do this in O(n?) time and O(n) space 0 ! 2 3 4
(space-saving variant) 0 0 1) 3 _a The optimal
e But that algo does not give us the optimal alignment itself alignments are:
(problem variant 2) G 1) -1 -1 -2 -3 -4 L (GAAGA)
. ; ; : ; ; - \-caca
. F\Iovy. algor|t2hm for computing an optimal alignment itself N 5 o D) 1 0 1 5 (GAAGA)
in time O(n*) but space O(n) onch
L3 -3 -3 0 0 2 3. (ggﬁg:)
4.
There are several algorithms achieving this, e.g. Hirschberg (1975) aka ¢ 4l _a 4 1 1 1 (CAC_A)
Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the
book by Durbin, Eddy, Krogh, Mitchison (ch. 2.6). A 5| _s _5 5 5 1
3/9 4
Consider the first optimal alignment ((féﬁgﬁ): Consider the first optimal alignment (‘Eéﬁg:):
Idea: Divide-and-conquer Idea: Divide-and-conquer
We divide the two sequences s, t in two parts, left and right, align left with We divide the two sequences s, t in two parts, left and right, align left with
left, right with right, and then concatenate the two alignments: left, right with right, and then concatenate the two alignments:
GAAGA (GAAGA GAAGA (GAAGA)
CACA ~CACA- CACA ~CACA.
o oa)) ES o (&) (&)
G A G A G A G A
o PO A () G @) () o PO) @) @ ()
top-down: split sequences into two bottom-up: concatenate alignments top-down: split sequences into two bottom-up: concatenate alignments

Question
But how do we know where to divide them?

Definition
A cut is a pair of positions (n’,m’), where 1 < n’ <n,and 1< m <m
(with |s| = n,|t| = m).

1. In sequence 1, we will always take the middle cut position n’ = [n/2].

2. In sequence 2, we will remember where the middle row n’ = [n/2]
was crossed.

3. For this, we will need to compute another matrix M (again, in
space-saving manner!).

Algorithm PWA(s,t)

1. if max(|s|,|t|) < 2, then return an optimal alignment computed with
N-W-algorithm

. else

2

3. compute DP-table D row-wise, and

4 from i = [n/2] on, compute also matrix M (row-wise)
5

return PWA(s1 ... s[p/2), t1 - - - t,) concatenated
with PWA(SM/YH»I o Soy by l’m).

(for a detailed example, see class notes)

Matrix M

o Cell M(i,j) contains, where i > n’, an index r s.t. there is an optimal
alignment with score D(i,j) passing through cell (n’, r).

o Computation:

M(n',j)=jforall j=1,...,m;

fori>n',0<j<m: M(ij)= M(,j) where D(i,j) derives from

cell (1.7") (therefore (i, ') € {(i — 1.7). (i — 1,j — 1), (i.j — 1)})

— if there is more than one, then choose one acc. to priority (e.g.

left-diag-top)

Then M(n, m) = r s.t. there is an optimal alignment of s and t which

passes through cell ([n/2],r).

Thus, we can use the cut (', r) = ([n/2], M(n, m)) in the divide-step

and recurse with sy ...s,y and ty...t, on the left, and s, 41 ...5s, and

ty4+1-..tm on the right.

Analysis

e Space: Since all matrix computations are row-wise, they all need
linear space in m, and none need to be stored, thus O(m); we need to
store the partial alignments, whose total length is the length of the
final alignment, thus O(n+ m): altogether space O(n+ m)

e Time: In each iteration, we are exactly halving the problem size
(wherever we cut t, string s is always cut in the middle), thus we get:

1 1 — 1
nm+§nm+1nm+...§nm§27:2nm60(nm)4

Thus we doubled the time (asymptotically the same, both O(nm)), but
reduced the space from quadratic to linear.

