
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2017/18, spring term

Pairwise Alignment 3

Optimal pairwise alignment in linear space

2 / 9

Given two sequences s, t of length n:

• DP algorithm for global alignment: O(n2) time and space

• if we only want the score of an optimal alignment sim(s, t) (problem
variant 1), then we can do this in O(n2) time and O(n) space
(space-saving variant)

• But that algo does not give us the optimal alignment itself
(problem variant 2)

• Now: algorithm for computing an optimal alignment itself
in time O(n2) but space O(n)

There are several algorithms achieving this, e.g. Hirschberg (1975) aka
Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the
book by Durbin, Eddy, Krogh, Mitchison (ch. 2.6).

3 / 9

s = GAAGA, t = CACA match: 2, mismatch: -1, gap: -1

D(i , j) C A C A

0 1 2 3 4

0 0 −1 −2 −3 −4

G 1 −1 −1 −2 −3 −4

A 2 −2 −2 1 0 −1

A 3 −3 −3 0 0 2

G 4 −4 −4 −1 −1 1

A 5 −5 −5 −2 −2 1

The optimal
alignments are:

1.
(
GAAGA
-CACA

)
2.
(
GAAGA
CA-CA

)
3.
(
GAAGA
C-ACA

)
4.
(
GAAGA
CAC-A

)

4 / 9

Consider the first optimal alignment
(
GAAGA
-CACA

)
:

Idea: Divide-and-conquer

We divide the two sequences s, t in two parts, left and right, align left with
left, right with right, and then concatenate the two alignments:

GAAGA
CACA

GAA
CA

GA
CA

GA
C

A
A

G
C

A
A

GAAGA
-CACA

GAA
-CA

GA
CA

GA
-C

A
A

G
C

A
A() (((

((

(

)))

))

)

top-down: split sequences into two bottom-up: concatenate alignments

Question
But how do we know where to divide them?

5 / 9

Consider the first optimal alignment
(
GAAGA
-CACA

)
:

Idea: Divide-and-conquer

We divide the two sequences s, t in two parts, left and right, align left with
left, right with right, and then concatenate the two alignments:

GAAGA
CACA

GAA
CA

GA
CA

GA
C

A
A

G
C

A
A

GAAGA
-CACA

GAA
-CA

GA
CA

GA
-C

A
A

G
C

A
A() (((

((

(

)))

))

)

top-down: split sequences into two bottom-up: concatenate alignments

Question
But how do we know where to divide them?

5 / 9

Definition
A cut is a pair of positions (n′,m′), where 1 ≤ n′ ≤ n, and 1 ≤ m′ ≤ m
(with |s| = n, |t| = m).

1. In sequence 1, we will always take the middle cut position n′ = dn/2e.
2. In sequence 2, we will remember where the middle row n′ = dn/2e

was crossed.

3. For this, we will need to compute another matrix M (again, in
space-saving manner!).

6 / 9

Matrix M

• Cell M(i , j) contains, where i ≥ n′, an index r s.t. there is an optimal
alignment with score D(i , j) passing through cell (n′, r).

• Computation:
M(n′, j) = j for all j = 1, . . . ,m;
for i > n′, 0 ≤ j ≤ m: M(i , j) = M(i ′, j ′), where D(i , j) derives from
cell (i ′, j ′) (therefore (i ′, j ′) ∈ {(i − 1, j), (i − 1, j − 1), (i , j − 1)})
– if there is more than one, then choose one acc. to priority (e.g.
left-diag-top)

• Then M(n,m) = r s.t. there is an optimal alignment of s and t which
passes through cell (dn/2e, r).

• Thus, we can use the cut (n′, r) = (dn/2e,M(n,m)) in the divide-step
and recurse with s1 . . . sn′ and t1 . . . tr on the left, and sn′+1 . . . sn and
tr+1 . . . tm on the right.

7 / 9

Algorithm PWA(s,t)

1. if max(|s|, |t|) ≤ 2, then return an optimal alignment computed with
N-W-algorithm

2. else

3. compute DP-table D row-wise, and

4. from i = dn/2e on, compute also matrix M (row-wise)

5. return PWA(s1 . . . sdn/2e, t1 . . . tr) concatenated
with PWA(sdn/2e+1 . . . sn, tr+1 . . . tm).

(for a detailed example, see class notes)

8 / 9

Analysis

• Space: Since all matrix computations are row-wise, they all need
linear space in m, and none need to be stored, thus O(m); we need to
store the partial alignments, whose total length is the length of the
final alignment, thus O(n + m): altogether space O(n + m)

• Time: In each iteration, we are exactly halving the problem size
(wherever we cut t, string s is always cut in the middle), thus we get:

nm +
1

2
nm +

1

4
nm + . . . ≤ nm

∞∑
k=1

1

2k
= 2nm ∈ O(nm).

Thus we doubled the time (asymptotically the same, both O(nm)), but
reduced the space from quadratic to linear.

9 / 9

