Affine gap functions

match: 2, mismatch: -1, gap: -1
GACGCTGCCAC GACGCTGCCAC
-AC----—- CA- -A--C--C-A-

e Both alignments have score 1, but there is a big difference:

Affine gap functions

e We would like to give k gaps in one block a higher score than k
individual gaps.
e Longer gaps should have lower score than shorter gaps.

Affine gap functions:

e gap open: h <0

e gap extend: g <0

e score of k gaps = h+ kg, for k >1
e typically: h< g

Affine gap functions

match: 2, mismatch: -1, gaps: h=—-3,g = —1

GACGCTGCCAC GACGCTGCCAC
-AC----- CA- -A--C--C-A-
score = —8 score = —14

e So now the score reflects that the first al. is better than the second.

e But how do we compute the new score?

Affine gap functions

match: 2, mismatch: -1, gap: -1

GACGCTGCCAC GACGCTGCCAC
-AC----- CA- -A--C--C-A-

Both alignments have score 1, but there is a big difference:

Assuming that t is similar to a substring of s (namely to ACGCTGCCA),
then the first alignment has only one long gap, while the second has 3.

Each gap, independent of its length, suggests that one evolutionary
event happened (insertion or deletion of a stretch of DNA).

The first alignment has one such event, the second three.

We believe that the first one is more likely (Occam’s razor), so should
have higher score.

Occam'’s razor: The simplest explanation is the best.

Affine gap functions

match: 2, mismatch: -1, gaps: h=—-3,g = -1

GACGCTGCCAC GACGCTGCCAC
-AC----- CA- -A--C--C-A-
score = —8 score = —14

Computation

Recall the central idea of the DP-algorithm:

If A is an alignment and B is the same al. without the last column, then

e score(A) = score(BB) + score(last column).
o If A is optimal, then B is also optimal.
o There are 3 possibilities for the last column:
L. last column is (¥) (char-char)
2. last columnis (*) (char-gap)
3. last column is () (gap-char)
The problem now is that in cases 1. and 3., the score of the last column
depends on what comes before! E.g. with h = —3, g = —1, the score of
(*) is —1 if preceded by a column of the type (*), and —4 otherwise.

10 / 15

Computation

e So we have to distinguish between different types of B's (current
alignment without last column), according to what type its last
column is.

1/15

Computation

Matrix A: Score of last column does not depend on alignment 3

e for i =0 or j = 0: There is no alignment ending with a column (:)
e fori,j > 0: A(i,j) = best alignment of any type + match/mismatch
|y —

f(sist;)

Computation of entries:
e A(i,0) =A(0,j) = —oofori=1,...,nj=1,...,m, and
A(0,0) = O (this is necessary for the recursion)
Al —1,j = 1)+ f(si, tj)
o fori,j > 0: A(i,j) = max{ B(i — 1,j — 1) + f(si, tj)
Ci—1,j—1)+f(si, tj)

12 /15

Computation

Matrix C: Score of last column depends on B

e for i = 0: There is no alignment ending with a column (f)
e for i > 0,j = 0: Score of alignment is score of one gap of length ;.
e fori,j>0:
. best al. of type C + extend an existing gap
C(i,j) = max
best al. of types A or B + start a new gap

Computation of entries:

e C(0,j)=—ocoforj=0,...,m,
o C(i,0)=h+i-gfori=1,...,n
A= 1))+ (h+g)
o fori,j>0: C(i,j) =max{ B(i—1,j)+ (h+g)
Cli-Lj)+eg

14 /15

Computation

e So we have to distinguish between different types of B's (current
alignment without last column), according to what type its last
column is.

o We will do this via 3 different matrices, each of size (n+ 1)(m + 1):

e A(i,j) = highest score of an alignment of i-length prefix of s and
Jj-length prefix of t ending with (:J)

e B(i,j) = highest score of an alignment of i-length prefix of s and
J-length prefix of t ending with (;)

e C(i,j) = highest score of an alignment of i-length prefix of s and
J-length prefix of t ending with (i)

o Computation of entries will depend on entries from the other matrices.

11/ 15

Computation
Matrix B: Score of last column depends on B

e for j = 0: There is no alignment ending with a column (1)
e for i =0,/ > 0: Score of alignment is score of one gap of length j.
e fori,j>0:
. best al. of type B + extend an existing gap
B(i,j) = max
best al. of types A or C + start a new gap

Computation of entries:
e B(i,0) = —oco fori =0,...,n,
e B(0,j)=h+j-gforj=1,....m
A(ij=1)+ (h+g)
e fori,j>0: B(i,j)=max{ B(i,j—1)+g
Cli.j—1)+(h+g)

13 /15

Analysis

Space: for each matrix: O(nm), so altogether O(nm)

e Time: Computation of every entry is constant, and there are

3(n+ 1)(m+ 1) = O(nm) entries, so altogether O(nm).
Backtracing: as before, possibly jumping between different matrices.
Time: O(length of optimal alignment) = O(n + m)

Thus asymptotically the same time and space complexity as the basic
algorithm.

However, we do pay for the better gap function by increasing both
time and space by a factor of 3.

Affine gap penalties are much more reasonable (realistic, useful) than
linear gap penalties, and they are universally applied. (All alignment
programs use affine gap functions.)

15 /15

