
A�ne gap functions

match: 2, mismatch: -1, gap: -1

GACGCTGCCAC GACGCTGCCAC

-AC-----CA- -A--C--C-A-

• Both alignments have score 1, but there is a big di↵erence:

• Assuming that t is similar to a substring of s (namely to ACGCTGCCA),
then the first alignment has only one long gap, while the second has 3.

• Each gap, independent of its length, suggests that one evolutionary
event happened (insertion or deletion of a stretch of DNA).

• The first alignment has one such event, the second three.

• We believe that the first one is more likely (Occam’s razor), so should
have higher score.

• Occam’s razor: The simplest explanation is the best.
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A�ne gap functions

• We would like to give k gaps in one block a higher score than k
individual gaps.

• Longer gaps should have lower score than shorter gaps.

A�ne gap functions:

• gap open: h < 0

• gap extend: g < 0

• score of k gaps = h + kg , for k � 1

• typically: h < g
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A�ne gap functions

match: 2, mismatch: -1, gaps: h = �3, g = �1

GACGCTGCCAC GACGCTGCCAC

-AC-----CA- -A--C--C-A-

score = �8 score = �14

• So now the score reflects that the first al. is better than the second.

• But how do we compute the new score?
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Computation

Recall the central idea of the DP-algorithm:

If A is an alignment and B is the same al. without the last column, then

• score(A) = score(B) + score(last column).

• If A is optimal, then B is also optimal.
• There are 3 possibilities for the last column:

1. last column is
�⇤
⇤
�

(char-char)
2. last column is

�⇤
�
�

(char-gap)

3. last column is
��
⇤
�

(gap-char)

The problem now is that in cases 1. and 3., the score of the last column
depends on what comes before! E.g. with h = �3, g = �1, the score of�
A
�
�
is �1 if preceded by a column of the type

�⇤
�
�
, and �4 otherwise.
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Computation

• So we have to distinguish between di↵erent types of B’s (current
alignment without last column), according to what type its last
column is.

• We will do this via 3 di↵erent matrices, each of size (n + 1)(m + 1):

• A(i , j) = highest score of an alignment of i-length prefix of s and
j-length prefix of t ending with

�
si
tj

�

• B(i , j) = highest score of an alignment of i-length prefix of s and
j-length prefix of t ending with

��
tj

�

• C (i , j) = highest score of an alignment of i-length prefix of s and
j-length prefix of t ending with

�
si
�
�

• Computation of entries will depend on entries from the other matrices.
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Computation

Matrix A: Score of last column does not depend on alignment B

• for i = 0 or j = 0: There is no alignment ending with a column
�⇤
⇤
�

• for i , j > 0 : A(i , j) = best alignment of any type + match/mismatch| {z }
f (si ,tj )

Computation of entries:

• A(i , 0) = A(0, j) = �1 for i = 1, . . . , n, j = 1, . . . ,m, and
A(0, 0) = 0 (this is necessary for the recursion)

• for i , j > 0: A(i , j) = max

8
><

>:

A(i � 1, j � 1) + f (si , tj)

B(i � 1, j � 1) + f (si , tj)

C (i � 1, j � 1) + f (si , tj)
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Computation

Matrix B : Score of last column depends on B

• for j = 0: There is no alignment ending with a column
��
⇤
�

• for i = 0, j > 0: Score of alignment is score of one gap of length j .

• for i , j > 0 :

B(i , j) = max

(
best al. of type B + extend an existing gap

best al. of types A or C + start a new gap

Computation of entries:

• B(i , 0) = �1 for i = 0, . . . , n,

• B(0, j) = h + j · g for j = 1, . . . ,m

• for i , j > 0: B(i , j) = max

8
><

>:

A(i , j � 1) + (h + g)

B(i , j � 1) + g

C (i , j � 1) + (h + g)
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Computation

Matrix C : Score of last column depends on B

• for i = 0: There is no alignment ending with a column
�⇤
�
�

• for i > 0, j = 0: Score of alignment is score of one gap of length j .

• for i , j > 0 :

C (i , j) = max

(
best al. of type C + extend an existing gap

best al. of types A or B + start a new gap

Computation of entries:

• C (0, j) = �1 for j = 0, . . . ,m,

• C (i , 0) = h + i · g for i = 1, . . . , n

• for i , j > 0: C (i , j) = max

8
><

>:

A(i � 1, j) + (h + g)

B(i � 1, j) + (h + g)

C (i � 1, j) + g
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Analysis

• Space: for each matrix: O(nm), so altogether O(nm)

• Time: Computation of every entry is constant, and there are
3(n + 1)(m + 1) = O(nm) entries, so altogether O(nm).

• Backtracing: as before, possibly jumping between di↵erent matrices.
Time: O(length of optimal alignment) = O(n +m)

• Thus asymptotically the same time and space complexity as the basic
algorithm.

• However, we do pay for the better gap function by increasing both
time and space by a factor of 3.

• A�ne gap penalties are much more reasonable (realistic, useful) than
linear gap penalties, and they are universally applied. (All alignment
programs use a�ne gap functions.)
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