Semiglobal alignment

Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

Pairwise Alignment 2

CAGCGTACACT ---CCTA----_ score -5

CAGCGTACACT C--C-T--A--score -3

2 / 15

match: 1,

mismatch: -1, gap: -1

Semi	global alignment		Semi	global alignment
		natch: 1, atch: -1, gap: -1		
CAGCGTACACT CCTA	CAGCGTACACT CC-TA		If we do not count the extrem	al gaps, then we get:
score -5	score -3		CAGCGTACACT CCTA score 2	CAGCGTACACT CC-TA score -1
The left alignment seems better, but it has a lower score.We would like the extremal gaps (before and after the second string) not to count at all.			as desired, the score now rethe right one.	eflects that the left alig

• Note that this is not covered by local alignment (why?).

2 / 15

match: 1, mismatch: -1, gap: -1

ment is better than

3 / 15

Semiglobal alignment: algorithm

gaps matched here should be free beginning of s end of s beginning of tend of t

action Os in first column maximize over last column $0s\ in\ first\ row$ maximize over last row

Semiglobal alignment: algorithm

gaps matched here should be free	action				
beginning of s	0s in first column				
end of <i>s</i>	maximize over last column				
beginning of t	Os in first row				
end of t	maximize over last row				
Analysis					
time and space $O(nm)$					

Semiglobal alignment: example

The global similarity of the two strings s = ACGC and t = GCTC is 0, with (unique) optimal alignment $\binom{\text{ACGC}}{\text{GCTC}}$. Let us compute an optimal semiglobal alignment of s and t, where we set all four types of external gaps as free, and match: +1, mism., gap = -1.

D(i,j)			G	С	Т	С	
		0	1	2	3	4	
	0	0	0	0	0	0	optimal semiglobal
A	1	0	$^{-1}$	-1	-1	$^{-1}$	alignment:
С	2	0	-1	0	-1	0	ACGC GCTC
G	3	0	1	0	-1	-1	score = 2
С	4	0	0	2	1	0	

5 / 15

Semiglobal alignment

N.B.

- Semiglobal alignment is also called *end-space-free alignment*.
- It is not one algorithm, but (strictly speaking) 15 different ones, depending on where we want to have charge-free gaps (e.g. beginning and end of first sequence; beginning of first, end of second; etc.)

Applications include:

- find a prefix of s with maximum similarity to t which variant do we need?
- overlap finding (e.g. for sequence assembly): find prefix s^\prime of s and suffix t' of t s.t. sim(s', t') maximal, or vice versa (prefix of t with suffix of s) - which variant do we need?
- substring match: find a substring s' of s with sim(s', t) maximal which variant do we need?

6 / 15