Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2017/18, spring term

Pairwise Alignment

Alignments

Alignment
e a way of visualizing similarities and differences between two strings

e we want to find a good way of doing this

Ex: five different alignments of s = ACCT and t = CAT

ACCT ACC-T ---ACCT

-ACCT ACCT
--CAT CAT----

CA--T —-CAT CAT-

Formal definition
An alignment A of s,t € ¥* is a matrix with two rows, entries from X U{—}, s.t.
gap

1. deleting all gaps from the first row yields s
2. deleting all gaps from the second row yields t
3. no column consists of two gaps
2/34

Scoring alignments

scoring function
e score of a column: match (same char), mismatch (diff. chars), gap

e score of A = sum of column scores

Ex.
‘match mismatch gap
| 2 -1 -1
—-ACCT ACCT ACCT ACC-T —---ACCT
CA--T -CAT CAT- --CAT CAT----
1 2 -4 1 -7

N.B.: Remember that these values depend on the scoring function!

Alignments

Alignment
e a way of visualizing similarities and differences between two strings

/ 34

e we want to find a good way of doing this

Ex: five different alignments of s = ACCT and ¢t = CAT
---ACCT
CAT----

ACCT ACCT

—-ACCT
CAT-

CA--T -CAT

ACC-T

—--CAT

Scoring alignments

scoring function

e score of a column: match (same char), mismatch (diff. chars), gap

e score of A = sum of column scores

Ex.

| match mismatch gap

2 T -1
-ACCT ACCT ACCT ACC-T ———ACCT
CA--T —-CAT CAT- —-CAT CAT----

Scoring alignments

So acc. to our scoring function, alignment 2 is the best (of the five)!

-ACCT ACCT ACCT ACC-T ---ACCT
CA--T -CAT CAT- --CAT CAT----
1 2 -4 1 -7

But is it best possible?

Optimal alignments Our computational problem: Global alignment

Def. .
An optimal alignment of s and t is an alignment A with maximum score, Problem variant 1
i.e. an alignment A s.t. Input: Two strings s, t over alphabet ¥, scoring function f.
, .. . Output: sim(s, t).
score(A) = max{score(A’) : A’ is an alignment of s and t}
Problem variant 2
Def.)))
Given s,t € £* and scoring function f, the similarity of s and ¢, is Input: Two strings s, ¢ over alphabet ¥, scoring function f.

Output: An optimal alignment of s and t.

sim(s, t) = score of an optimal alignment
N.B.: In variant 1, we want only a number, we are not interested in an optimal

= max{score(A) : A is an alignment of s and t} alignment itself.

5/34
Our computational problem: Global alignment Exhaustive search
For now, let's concentrate on Variant 1 (i.e. only sim(s, t) is sought).
Global alignment Algorithm 1: Exhaustive search
Input: Two strings s, t over alphabet ¥, scoring function f. 1. consider every possible alignment of s and t
Output: sim(s, t). 2. for each of these, compute its score
3. output the maximum of the scores computed

We will see two algorithms for this problem.

7/34

Number of alignments
Algorithm Exhaustive search for global alignment List all alignments of s = AC and ¢ = GA.
Input: strings s, t, with |s| = n, |t| = m; scoring function f
Output: value sim(s, t)
1. int max = (n+ m)g; //g is the cost of a gap
2. for each alignment A of s and t (in some order)
3. do if score(A) > max
4. then max < score(A);
5. return max;
Note:
1. The variable max is needed for storing the highest score so far seen.
2. The initial value of max is the score of some alignment of s, t (which one?)
9 /34

10/ 34

List all alignments of s = AC and t = GA.

Number of alignments

You should have got these 13 al's:

Que:

How many alignments are there in general for two strings s and t?

GA-

AC
GA

AC-

stion

Observation

The number of alignments depends only on the length of s and t.

Def.

Let N(n, m) = number of al's of two strings of length n and m.

We

know:
N(2,2) =13
N(1,1) =3

N(n,0) =1, N(O,m) =1

A-C
GA-

A-C

AC-
G-A

Number of alignments

A--C
—GA-

we set: N(0,0) =1 (empty alignment)

Number of alignments

Look at the last column of the alignments:

-AC
GA-

AC
GA

AC-
-GA

A-C
GA-

A-C

AC-
G-A

A--C
—GA-

—AC-
G--A

-A-C
G-A-

-A-C
G-A-

A-C-
-G-A

Number of alignments

Question
How many alignments are there in general for two strings s and t?

Observation
The number of alignments depends only on the length of s and ¢.

Def.
Let N(n, m) = number of al's of two strings of length n and m.
We know:

o N(2,2) =13

o N(1,1) =

10 / 34

Number of alignments

N(n,m)| 0 1 2 3 4 5
0 11 1 1 1 1
1 103

2 1 13

3 1

4 1

5 1

11/34

Number of alignments

We have a recursive formula:

e N(n,0)=N(O,m)=1 for n,m >0

e and for n,m > 0:

N(n,m)=N(n—1,m)+ N(n—1,m—1)+ N(n,m—1)

13 /34

11/ 34

12 /34

14/ 34

Number of alignments

N(n,m)| 0 1 2 3 4 5
0 11 1 1 1 1
1 1 3 5
2 1 13
3 1
4 1
5 1

Number of alignments

Let's look at the case n = m:

n |01 2 3 4 5 ... 1000
N(n,n)[1 3 13 63 321 1683 ... ~10"%

A Dynamic Programming Algorithm

Dynamic Programming

is a class of algorithms (like greedy, divide and conquer, ...)

applicable when solution can be constructed from solutions of
subproblems

subproblem solutions re-used several times
uses a matrix (" DP-table") for storing subproblem solutions

15 / 34

16 / 34

17 / 34

Number of alignments

N(n,m)| © 1 2 3 4 5
0 1 1 1 1 1 1
1 1 3 5 7 9 11
2 1 5 13 25 41 61
3 1 7 25 63 129 231
4 1 9 41 129 321 681
5 1 11 61 231 681 1683
Number of alignments
Let's look at the case n = m:
n |01 2 3 4 5 1000
N(n,n)|1 3 13 63 321 1683 ~ 10757

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:

For any al. A, we have max(n, m) < |A| < (n+ m), thus:

N(n, m) - max(n, m) < no. of steps of algo. < N(n, m) - (n+ m)

Therefore, it has exponential running time: too slow!

Smaller subproblems

Crucial idea

15 / 34

16 / 34

If A is an optimal alignment, then B, the same alignment without the last

column, is also optimal.

Proof

By contradiction (see board).

18 / 34

Smaller subproblems The DP-table

Crucial idea . . .

If A is an optimal alignment, then B, the same alignment without the last Algorithm 2: Needleman-Wunsch algorithm for global alignment
column, is also optimal. e construct a DP-table D of size (n4 1) x (m+ 1) s.t.

Proof .. .

By contradiction (see board). D, j) = sim(sy...si,tr .)

(We will see in a moment how!)
So we will compute the scores of optimal alignments of all pairs of prefixes * return D(n, m)

of s and t, and construct an optimal alignment from that!

18 / 34 19 / 34
Constructing solutions from smaller subproblems Constructing solutions from smaller subproblems
Look at an alignment of s and t. There are 3 cases: So to compute sim(s, t) = D(n, m), we need to know
1. last column is (sj‘) o sim(s1...Sn—1,t1...tm) =D(n—1,m)
. i wSpn_t,titp_g) =D(n—1,m—1)
2.1 [a ® sim(sy...8n-1,1..tn1) ;
ast column is (tm) ° Slm(si...sn,tl...tm,l) — D(n’ m— 1)

3. last columnis (_
(t"‘) and add the score of the last column!

Recall that if A is optimal, then so is B = (A without last column)!

e incase 1, Bis an opt. al. of sq...sp_1 and ty...ty
e in case 2, Bis an opt. al. of sq...8p—1 and ty...tp_1

e in case 3, Bis an opt. al. of sy...sp and ty...tp_1

20 /34

21 /34
Constructing solutions from smaller subproblems Constructing solutions from smaller subproblems
So to compute sim(s, t) = D(n, m), we need to know .
Now we can compute all entries of D:

e sim(sy...8p—1,t1...ty) =D(n—1,m) . . .

o sim(s1..S0_1,t1...tn 1) =D(n—1,m—1) e D(i,0)=i-gap fori>0

o sim(sy...8n,t1...tn1) =D(n,m—1) e D(0,j)=j-gap forj>0
and add the score of the last column! e recursion (for i,j > 0):

D(i —1,j) + gap
D(n—1,m) +gap D(i,j) = max D(f71,1—1)+{'”‘”’“’7 s =14

match if s, = t, mismatch if s; # t;
D(n,m) = max 3 D(n—1,m ~1 "t .
(n,m) = max (n m)+ {mismatch if sy # tm D(i,j — 1)+ gap

D(n,m —1) + gap

21 /34 22 /34

Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1
D(i,j) c A T o
0 1 2 3 D(i.J) ¢ A T
0 1 2 3
0 0 -1 -2 -3
0 0 -1 -2 -3
A 1) -1 -1 1

A 1] -1 -1 1 0

¢ 2| =2
C 2] =2 1 0 0

¢ 3| -3
¢ 3] -3 0 0 1

T 4| -4
T 4| -4 -1 -1 2

D(1,1) = max{—1-1,0-1,-1-1} = =1 D(1,2) = max{—2—1,-142,~1-1} =1
23 /34 24 /34
Needleman-Wunsch DP algorithm for global alignment Needleman-Wunsch DP algorithm for global alignment

Variant which outputs sim(s, t) only.

Algorithm first introduced by Needleman & Wunsch (1970).

Different orders of computation are possible: necessary to compute
D(i—1,j),D(i — 1,j — 1), and D(i,j — 1) before D(i,)
e Time: O(n-m)

Algorithm DP algorithm for global alignment

Input: strings s, t, with |s| = n, |t| = m; scoring function f
Output: value sim(s, t)

1. for j=0to mdo D(0,j)«+j-g;

(initialize first row and column in constant time, for the remaining n- m cells, we

2. fori=1tondo D(i,0)«i-g; - '

3. fori=1tondo have 3 lookups and additions, so a constant number of operations)

4 for j=1to mdo e Space: O(n-m)
D(i—1,j)+g (matrix of size (n+ 1)(m + 1))

5. D(i,j) - max{ D(i —1,j — 1) + f(s;, t;) e for n = m, we get time and space O(n?), hence this is called a
D(i,j—1)+g quadratic (time and space) algorithm

6. return D(n, m); Space-saving variant exists (later)

25 /34 26 /34

