
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics

academic year 2017/18, spring term

Pairwise Alignment

Alignments

Alignment

• a way of visualizing similarities and di↵erences between two strings

• we want to find a good way of doing this

Ex: five di↵erent alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

Formal definition
An alignment A of s, t 2 ⌃⇤ is a matrix with two rows, entries from ⌃ [{�}

gap

, s.t.

1. deleting all gaps from the first row yields s

2. deleting all gaps from the second row yields t

3. no column consists of two gaps

2 / 34

Alignments

Alignment

• a way of visualizing similarities and di↵erences between two strings

• we want to find a good way of doing this

Ex: five di↵erent alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

Formal definition
An alignment A of s, t 2 ⌃⇤ is a matrix with two rows, entries from ⌃ [{�}

gap

, s.t.

1. deleting all gaps from the first row yields s

2. deleting all gaps from the second row yields t

3. no column consists of two gaps

2 / 34

Scoring alignments

scoring function

• score of a column: match (same char), mismatch (di↵. chars), gap

• score of A = sum of column scores

Ex.
match mismatch gap

2 �1 �1

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

1 2 -4 1 -7

N.B.: Remember that these values depend on the scoring function!

3 / 34

Scoring alignments

scoring function

• score of a column: match (same char), mismatch (di↵. chars), gap

• score of A = sum of column scores

Ex.
match mismatch gap

2 �1 �1

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

1 2 -4 1 -7

N.B.: Remember that these values depend on the scoring function!
3 / 34

Scoring alignments

So acc. to our scoring function, alignment 2 is the best (of the five)!

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

1 2 -4 1 -7

But is it best possible?

4 / 34

Optimal alignments

Def.
An optimal alignment of s and t is an alignment A with maximum score,
i.e. an alignment A s.t.

score(A) = max{score(A0) : A0 is an alignment of s and t}

Def.
Given s, t 2 ⌃⇤ and scoring function f , the similarity of s and t, is

sim(s, t) = score of an optimal alignment

= max{score(A) : A is an alignment of s and t}

5 / 34

Our computational problem: Global alignment

Problem variant 1

Input: Two strings s, t over alphabet ⌃, scoring function f .

Output: sim(s, t).

Problem variant 2

Input: Two strings s, t over alphabet ⌃, scoring function f .

Output: An optimal alignment of s and t.

N.B.: In variant 1, we want only a number, we are not interested in an optimal
alignment itself.

6 / 34

Our computational problem: Global alignment

For now, let’s concentrate on Variant 1 (i.e. only sim(s, t) is sought).

Global alignment

Input: Two strings s, t over alphabet ⌃, scoring function f .

Output: sim(s, t).

We will see two algorithms for this problem.

7 / 34

Exhaustive search

Algorithm 1: Exhaustive search

1. consider every possible alignment of s and t

2. for each of these, compute its score

3. output the maximum of the scores computed

8 / 34

Algorithm Exhaustive search for global alignment
Input: strings s, t, with |s| = n, |t| = m; scoring function f
Output: value sim(s, t)
1. int max = (n +m)g ; //g is the cost of a gap
2. for each alignment A of s and t (in some order)
3. do if score(A) > max
4. then max score(A);
5. return max ;

Note:

1. The variable max is needed for storing the highest score so far seen.

2. The initial value of max is the score of some alignment of s, t (which one?)

9 / 34

Number of alignments

List all alignments of s = AC and t = GA.

You should have got these 13 al’s:

-AC A-C --AC A--C -A-C

GA- GA- GA-- -GA- G-A-

AC A-C -AC

GA -GA G-A

AC- AC- AC-- -AC- A-C-

-GA G-A --GA G--A -G-A

10 / 34

Number of alignments

List all alignments of s = AC and t = GA.

You should have got these 13 al’s:

-AC A-C --AC A--C -A-C

GA- GA- GA-- -GA- G-A-

AC A-C -AC

GA -GA G-A

AC- AC- AC-- -AC- A-C-

-GA G-A --GA G--A -G-A

10 / 34

Number of alignments

Question
How many alignments are there in general for two strings s and t?

Observation
The number of alignments depends only on the length of s and t.

Def.
Let N(n,m) = number of al’s of two strings of length n and m.

We know:

• N(2, 2) = 13

• N(1, 1) =

3

• N(n, 0) = 1, N(0,m) = 1

• we set: N(0, 0) = 1 (empty alignment)

11 / 34

Number of alignments

Question
How many alignments are there in general for two strings s and t?

Observation
The number of alignments depends only on the length of s and t.

Def.
Let N(n,m) = number of al’s of two strings of length n and m.

We know:

• N(2, 2) = 13

• N(1, 1) = 3

• N(n, 0) = 1, N(0,m) = 1

• we set: N(0, 0) = 1 (empty alignment)

11 / 34

Number of alignments

N(n,m) 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3

2 1 13

3 1

4 1

5 1

12 / 34

Number of alignments

Look at the last column of the alignments:

-AC A-C --AC A--C -A-C

GA- GA- GA-- -GA- G-A-

AC A-C -AC

GA -GA G-A

AC- AC- AC-- -AC- A-C-

-GA G-A --GA G--A -G-A

13 / 34

Number of alignments

We have a recursive formula:

• N(n, 0) = N(0,m) = 1 for n,m � 0

• and for n,m > 0:

N(n,m) = N(n � 1,m) + N(n � 1,m � 1) + N(n,m � 1)

14 / 34

Number of alignments

N(n,m) 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3 5

7 9 11

2 1

5

13

25 41 61

3 1

7 25 63 129 231

4 1

9 41 129 321 681

5 1

11 61 231 681 1683

15 / 34

Number of alignments

N(n,m) 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3 5 7 9 11

2 1 5 13 25 41 61

3 1 7 25 63 129 231

4 1 9 41 129 321 681

5 1 11 61 231 681 1683

15 / 34

Number of alignments

Let’s look at the case n = m:

n 0 1 2 3 4 5 . . . 1000
N(n, n) 1 3 13 63 321 1683 . . . ⇡ 10767

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:

For any al. A, we have max(n,m)  |A|  (n +m), thus:

N(n,m) ·max(n,m)  no. of steps of algo.  N(n,m) · (n +m)

Therefore, it has exponential running time: too slow!

16 / 34

Number of alignments

Let’s look at the case n = m:

n 0 1 2 3 4 5 . . . 1000
N(n, n) 1 3 13 63 321 1683 . . . ⇡ 10767

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:

For any al. A, we have max(n,m)  |A|  (n +m), thus:

N(n,m) ·max(n,m)  no. of steps of algo.  N(n,m) · (n +m)

Therefore, it has exponential running time: too slow!

16 / 34

A Dynamic Programming Algorithm

Dynamic Programming

• is a class of algorithms (like greedy, divide and conquer, . . .)

• applicable when solution can be constructed from solutions of
subproblems

• subproblem solutions re-used several times

• uses a matrix (”DP-table”) for storing subproblem solutions

17 / 34

Smaller subproblems

Crucial idea
If A is an optimal alignment, then B, the same alignment without the last
column, is also optimal.

Proof
By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes
of s and t, and construct an optimal alignment from that!

18 / 34

Smaller subproblems

Crucial idea
If A is an optimal alignment, then B, the same alignment without the last
column, is also optimal.

Proof
By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes
of s and t, and construct an optimal alignment from that!

18 / 34

The DP-table

Algorithm 2: Needleman-Wunsch algorithm for global alignment

• construct a DP-table D of size (n + 1)⇥ (m + 1) s.t.

D(i , j) = sim(s
1

. . . si , t1 . . . tj)

(We will see in a moment how!)

• return D(n,m)

19 / 34

Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:

1. last column is
�
sn
�
�

2. last column is
�
sn
tm

�

3. last column is
��
tm

�

Recall that if A is optimal, then so is B = (A without last column)!

• in case 1, B is an opt. al. of s1...sn�1 and t1...tm
• in case 2, B is an opt. al. of s1...sn�1 and t1...tm�1

• in case 3, B is an opt. al. of s1...sn and t1...tm�1

20 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n,m), we need to know

• sim(s1...sn�1, t1...tm) = D(n � 1,m)
• sim(s1...sn�1, t1...tm�1) = D(n � 1,m � 1)
• sim(s1...sn, t1...tm�1) = D(n,m � 1)

and add the score of the last column!

D(n,m) = max

8
>>><

>>>:

D(n � 1,m) + gap

D(n � 1,m � 1) +

⇢
match if sn = tm

mismatch if sn 6= tm

D(n,m � 1) + gap

21 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n,m), we need to know

• sim(s1...sn�1, t1...tm) = D(n � 1,m)
• sim(s1...sn�1, t1...tm�1) = D(n � 1,m � 1)
• sim(s1...sn, t1...tm�1) = D(n,m � 1)

and add the score of the last column!

D(n,m) = max

8
>>><

>>>:

D(n � 1,m) + gap

D(n � 1,m � 1) +

⇢
match if sn = tm

mismatch if sn 6= tm

D(n,m � 1) + gap

21 / 34

Constructing solutions from smaller subproblems

Now we can compute all entries of D:

• D(i , 0) = i · gap for i � 0

• D(0, j) = j · gap for j � 0

• recursion (for i , j > 0):

D(i , j) = max

8
>>><

>>>:

D(i � 1, j) + gap

D(i � 1, j � 1) +

⇢
match if si = tj

mismatch if si 6= tj

D(i , j � 1) + gap

22 / 34

Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i , j) C A T

0 1 2 3

0 0 �1 �2 �3

A 1 �1 �1 1

C 2 �2

C 3 �3

T 4 �4

D(1, 1) = max{�1�1, 0�1,�1�1} = �1 D(1, 2) = max{�2�1,�1+2,�1�1} = 1

23 / 34

s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i , j) C A T

0 1 2 3

0 0 �1 �2 �3

A 1 �1 �1 1 0

C 2 �2 1 0 0

C 3 �3 0 0 1

T 4 �4 �1 �1 2

24 / 34

Needleman-Wunsch DP algorithm for global alignment

Variant which outputs sim(s, t) only.

Algorithm DP algorithm for global alignment
Input: strings s, t, with |s| = n, |t| = m; scoring function f
Output: value sim(s, t)
1. for j = 0 to m do D(0, j) j · g ;
2. for i = 1 to n do D(i , 0) i · g ;
3. for i = 1 to n do
4. for j = 1 to m do

5. D(i , j) max

8
><

>:

D(i � 1, j) + g

D(i � 1, j � 1) + f (si , tj)

D(i , j � 1) + g

6. return D(n,m);

25 / 34

Needleman-Wunsch DP algorithm for global alignment

• Algorithm first introduced by Needleman & Wunsch (1970).

• Di↵erent orders of computation are possible: necessary to compute
D(i � 1, j),D(i � 1, j � 1), and D(i , j � 1) before D(i , j)

• Time: O(n ·m)
(initialize first row and column in constant time, for the remaining n ·m cells, we

have 3 lookups and additions, so a constant number of operations)

• Space: O(n ·m)
(matrix of size (n + 1)(m + 1))

• for n = m, we get time and space O(n2), hence this is called a
quadratic (time and space) algorithm

• Space-saving variant exists (later)

26 / 34

