Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2017/18, spring term

Pairwise Alignment

Alignments

Alignment

- · a way of visualizing similarities and differences between two strings
- we want to find a good way of doing this

Ex: five different alignments of s = ACCT and t = CAT

-ACCT	ACCT	ACCT	ACC-T	ACCT
CAT	-CAT	CAT-	CAT	CAT

2 / 34

Alignments Scoring alignments Alignment scoring function • a way of visualizing similarities and differences between two strings • score of a column: match (same char), mismatch (diff. chars), gap • we want to find a good way of doing this • score of $\mathcal{A} = \mathsf{sum}$ of column scores Ex: five different alignments of s = ACCT and t = CAT.. match mismatch gap 2 -1 ACCT -ACCT ACCT ACC-T ---ACCT CA--T -CAT CAT---CAT CAT-------ACCT -ACCT ACCT ACCT ACC-T Formal definition CA--T -CAT CAT---CAT CAT----An alignment \mathcal{A} of $s, t \in \Sigma^*$ is a matrix with two rows, entries from $\Sigma \cup \{-\}$, s.t. 1. deleting all gaps from the first row yields \boldsymbol{s} 2. deleting all gaps from the second row yields t3. no column consists of two gaps 2 / 34 3 / 34 Scoring alignments

scoring function

- score of a column: match (same char), mismatch (diff. chars), gap
- score of $\mathcal{A} = \mathsf{sum}$ of column scores

match mismatch gap 2 $^{-1}$ -ACCT ACCT ACCT ACC-T ---ACCT CA--T -CAT CAT---CAT CAT----1 2 -4 1 -7

Scoring alignments

So acc. to our scoring function, alignment 2 is the best (of the five)!

-ACCT	ACCT	ACCT	ACC-T	ACCT	
CAT	-CAT	CAT-	CAT	CAT	
1	2	-4	1	-7	

But is it best possible?

N.B.: Remember that these values depend on the scoring function!

Optimal alignments

Def.

An optimal alignment of s and t is an alignment A with maximum score, i.e. an alignment A s.t.

 $score(\mathcal{A}) = \max\{score(\mathcal{A}') : \mathcal{A}' \text{ is an alignment of } s \text{ and } t\}$

Def.

Given $s, t \in \Sigma^*$ and scoring function f, the similarity of s and t, is

sim(s, t) = score of an optimal alignment $= \max\{score(\mathcal{A}) : \mathcal{A} \text{ is an alignment of } s \text{ and } t\}$

5 / 34

Our computational problem: Global alignment

Problem variant 1

Input: Two strings s, t over alphabet Σ , scoring function f. Output: sim(s, t).

Problem variant 2

Input: Two strings s, t over alphabet Σ , scoring function f. Output: An optimal alignment of s and t.

 $\ensuremath{\textbf{N.B.:}}$ In variant 1, we want only a number, we are not interested in an optimal alignment itself.

6 / 34

Our computational problem: Global alignment

For now, let's concentrate on Variant 1 (i.e. only sim(s, t) is sought).

Global alignment

Input: Two strings s, t over alphabet Σ , scoring function f. Output: sim(s, t).

We will see two algorithms for this problem.

Exhaustive search

Algorithm 1: Exhaustive search

- 1. consider every possible alignment of s and t
- 2. for each of these, compute its score
- $\ensuremath{\mathbf{3}}.$ output the maximum of the scores computed

8 / 34

7 / 34

Algorithm Exhaustive search for global alignment Input: strings s, t, with |s| = n, |t| = m; scoring function f Output: value sim(s, t)1. int max = (n + m)g; //g is the cost of a gap 2. for each alignment A of s and t (in some order) 3. do if score(A) > max

- 4. then $max \leftarrow score(\mathcal{A})$;
- 5. return max;

Note:

1. The variable max is needed for storing the highest score so far seen.

2. The initial value of max is the score of some alignment of s, t (which one?)

Number of alignments

List all alignments of s = AC and t = GA.

Number of alignments

List all alignments of s = AC and t = GA.

You should have got these 13 al's:

-AC	A-C	AC	AC	-A-C
GA-	GA-	GA	-GA-	G-A-
AC GA	A-C -GA	-AC G-A		
AC-	AC-	AC	-AC-	A-C-
-GA	G-A	GA	GA	-G-A

10 / 34

Number of alignments

Question

How many alignments are there in general for two strings s and t?

Observation

The number of alignments depends only on the length of s and t.

Def.

Let N(n, m) = number of al's of two strings of length n and m.

We know:

- N(2,2) = 13
 N(1,1) =
- /v(1,1) =

11 / 34

Number of alignments	Number of alignments
Question How many alignments are there in general for two strings <i>s</i> and <i>t</i> ?	<u>N(n,m)</u> 0 1 2 3 4 5
Dbservation	0 1 1 1 1 1 1
The number of alignments depends only on the length of <i>s</i> and <i>t</i> .	1 1 3
Let $N(n, m)$ = number of al's of two strings of length n and m .	2 1 13
We know: • <i>N</i> (2,2) = 13	3 1
• $N(1,1) = 3$	4 1
 N(n, 0) = 1, N(0, m) = 1 we set: N(0, 0) = 1 (empty alignment) 	5 1
11 / 34	

Number of alignments

Look at the last column of the alignments:

-A <mark>C</mark>	A-C	AC	AC	-A-C
GA-	GA-	GA	-GA-	G-A-
AC GA	A-C -GA	-AC G-A		
AC-	AC-	AC	-AC-	A-C-
-GA	G-A	GA	GA	-G-A

Number of alignments

We have a recursive formula:

• N(n,0) = N(0,m) = 1 for $n, m \ge 0$

• and for *n*, *m* > 0:

N(n,m) = N(n-1,m) + N(n-1,m-1) + N(n,m-1)

Number of alignments									
	N(n, m)	0	1	2	3	4	5	_	
	0	1	1	1	1	1	1		
	1	1	3	5					
	2	1		13					
	3	1							
	4	1							
	5	1							

15 / 34

Number of alignments

N(n,m)	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	3	5	7	9	11
2	1	5	13	25	41	61
3	1	7	25	63	129	231
4	1	9	41	129	321	681
5	1	11	61	231	681	1683

Number of alignments

Let's look at the case n = m:

Number of alignments

Let's look at the case n = m:

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search: For any al. \mathcal{A} , we have $\max(n,m) \leq |\mathcal{A}| \leq (n+m)$, thus:

 $N(n,m) \cdot \max(n,m) \le no. \text{ of steps of algo.} \le N(n,m) \cdot (n+m)$ Therefore, it has exponential running time: too slow!

16 / 34

A Dynamic Programming Algorithm

Dynamic Programming

- is a class of algorithms (like greedy, divide and conquer, \dots)
- applicable when solution can be constructed from solutions of subproblems
- subproblem solutions re-used several times
- uses a matrix ("DP-table") for storing subproblem solutions

Smaller subproblems

Crucial idea

If ${\mathcal A}$ is an optimal alignment, then ${\mathcal B},$ the same alignment without the last column, is also optimal.

Proof By contradiction (see board). 15 / 34

16 / 34

Smaller subproblems

Crucial idea

If ${\mathcal A}$ is an optimal alignment, then ${\mathcal B},$ the same alignment without the last column, is also optimal.

Proof

By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes of s and t, and construct an optimal alignment from that!

18 / 34

The DP-table

Algorithm 2: Needleman-Wunsch algorithm for global alignment

• construct a DP-table D of size $(n+1) \times (m+1)$ s.t.

 $D(i,j) = sim(s_1 \dots s_i, t_1 \dots t_j)$

- (We will see in a moment how!)
- return D(n, m)

19 / 34

Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:

- 1. last column is $\binom{s_n}{-}$
- 2. last column is $\binom{s_n}{t}$
- 3. last column is $\binom{-}{t_m}$

Recall that if \mathcal{A} is optimal, then so is $\mathcal{B} = (\mathcal{A} \text{ without last column})!$

- in case 1, ${\mathcal B}$ is an opt. al. of $\mathtt{s}_1...\mathtt{s}_{n-1}$ and $\mathtt{t}_1...\mathtt{t}_m$
- in case 2, ${\mathcal B}$ is an opt. al. of $\mathtt{s}_1...\mathtt{s}_{n-1}$ and $\mathtt{t}_1...\mathtt{t}_{m-1}$
- in case 3, ${\mathcal B}$ is an opt. al. of $\mathtt{s}_1...\mathtt{s}_n$ and $\mathtt{t}_1...\mathtt{t}_{m-1}$

20 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know

- $\begin{array}{ll} \bullet \ sim({\bf s}_1...{\bf s}_{n-1},{\bf t}_1...{\bf t}_m) &= D(n-1,m) \\ \bullet \ sim({\bf s}_1...{\bf s}_{n-1},{\bf t}_1...{\bf t}_{m-1}) &= D(n-1,m-1) \\ \bullet \ sim({\bf s}_1...{\bf s}_n,{\bf t}_1...{\bf t}_{m-1}) &= D(n,m-1) \end{array}$
- *sim*(s₁...s_n, t₁...t_{m-1})

and add the score of the last column!

21 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know

- = D(n-1,m)• $sim(s_1...s_{n-1}, t_1...t_m)$
- $sim(s_1...s_{n-1}, t_1...t_{m-1}) = D(n-1, m-1)$ $sim(s_1...s_n, t_1...t_{m-1}) = D(n-1, m-1)$

and add the score of the last column!

$$D(n,m) = \max \begin{cases} D(n-1,m) + gap \\ D(n-1,m-1) + \begin{cases} match & \text{if } s_n = t_m \\ mismatch & \text{if } s_n \neq t_m \end{cases} \\ D(n,m-1) + gap \end{cases}$$

Constructing solutions from smaller subproblems

Now we can compute all entries of D:

• $D(i,0) = i \cdot gap$ for $i \ge 0$ • $D(0,j) = j \cdot gap$ for $j \ge 0$ • recursion (for *i*, *j* > 0): $\int D(i-1,j) + gap$

$$D(i,j) = \max \begin{cases} D(i-1,j-1) + \begin{cases} match & \text{if } s_i = t_j \\ mismatch & \text{if } s_i \neq t_j \end{cases} \\ D(i,j-1) + gap \end{cases}$$

	D(i,j)			С	A	Т		
			0	1	2	3	_	
$D(1, 1) = \max\{-1, 2\}$		0	0	-1	-2	-3		
	A	1	-1	-1	1			
	С	2	-2					
	С	3	-3					
	Т	4	-4					

23 / 34

s = ACCT, t = CAT

match: 2, mismatch: -1, gap: -1

D(i,j)		0	C 1	A 2	Т 3
	0	0	-1	-2	-3
A	1	$^{-1}$	-1 -1 1 0	1	0
С	2	-2	1	0	0
С	3	-3	0	0	1
Т	4	-4	$^{-1}$	-1	2

24 / 34

Needleman-Wunsch DP algorithm for global alignment

Variant which outputs sim(s, t) only.

Algorithm DP algorithm for global alignment Input: strings s, t, with |s| = n, |t| = m; scoring function f Output: value sim(s, t)1. for j = 0 to m do $D(0, j) \leftarrow j \cdot g$; 2. for i = 1 to n do $D(i, 0) \leftarrow i \cdot g$; 3. for i = 1 to n do 4. for j = 1 to m do 5. $D(i, j) \leftarrow \max \begin{cases} D(i - 1, j) + g \\ D(i - 1, j - 1) + f(s_i, t_j) \\ D(i, j - 1) + g \end{cases}$

6. **return** *D*(*n*, *m*);

25 / 34

Needleman-Wunsch DP algorithm for global alignment

- Algorithm first introduced by Needleman & Wunsch (1970).
- Different orders of computation are possible: necessary to compute D(i-1,j), D(i-1,j-1), and D(i,j-1) before D(i,j)
- Time: $O(n \cdot m)$ (initialize first row and column in constant time, for the remaining $n \cdot m$ cells, we have 3 lookups and additions, so a constant number of operations)
- Space: O(n · m) (matrix of size (n + 1)(m + 1))
- for n = m, we get time and space $O(n^2)$, hence this is called a quadratic (time and space) algorithm
- Space-saving variant exists (later)

26 / 34