Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2017/18, spring term

Pairwise Alignment




Alignments
Alignment

e a way of visualizing similarities and differences between two strings

e we want to find a good way of doing this

2/34



Alignments
Alignment

e a way of visualizing similarities and differences between two strings

e we want to find a good way of doing this

Ex: five different alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT ACC-T ---ACCT
CA--T —-CAT CAT- --CAT CAT--—-

2/34



Alignments
Alignment

e a way of visualizing similarities and differences between two strings

e we want to find a good way of doing this

Ex: five different alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT ACC-T ---ACCT
CA--T —-CAT CAT- --CAT CAT--—-

Formal definition
An alignment A of s,t € * is a matrix with two rows, entries from X U {—}, s.t.
gap
1. deleting all gaps from the first row yields s
2. deleting all gaps from the second row yields t
3. no column consists of two gaps
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Scoring alignments

scoring function

e score of a column: match (same char), mismatch (diff. chars), gap

e score of A = sum of column scores

Ex.

| match mismatch gap

2 1 1
-ACCT ACCT ACCT ACC-T ---ACCT
CA--T -CAT CAT- --CAT CAT--—--
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Scoring alignments

scoring function

e score of a column: match (same char), mismatch (diff. chars), gap

e score of A = sum of column scores

Ex.
| match mismatch gap
2 1 1
-ACCT ACCT ACCT ACC-T ---ACCT
CA--T —-CAT CAT- -—CAT CAT--—--
1 2 -4 1 -7

N.B.: Remember that these values depend on the scoring function!
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Scoring alignments

So acc. to our scoring function, alignment 2 is the best (of the five)!

-ACCT ACCT ACCT ACC-T ---ACCT
CA--T —-CAT CAT- --CAT CAT----
1 2 -4 1 -7

But is it best possible?
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Optimal alignments

Def.
An optimal alignment of s and t is an alignment A with maximum score,
i.e. an alignment A s.t.

score(A) = max{score(A’) : A" is an alignment of s and t}
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Optimal alignments

Def.
An optimal alignment of s and t is an alignment A with maximum score,
i.e. an alignment A s.t.

score(A) = max{score(A’) : A" is an alignment of s and t}

Def.

Given s, t € ¥* and scoring function f, the similarity of s and t, is

sim(s, t) = score of an optimal alignment

= max{score(A) : A is an alignment of s and t}
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Our computational problem: Global alignment

Problem variant 1

Input: Two strings s, t over alphabet ¥, scoring function f.
Output: sim(s, t).

Problem variant 2

Input: Two strings s, t over alphabet ¥, scoring function f.

Output: An optimal alignment of s and t.

N.B.: In variant 1, we want only a number, we are not interested in an optimal
alignment itself.
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Our computational problem: Global alignment

For now, let's concentrate on Variant 1 (i.e. only sim(s, t) is sought).

Global alignment

Input: Two strings s, t over alphabet ¥, scoring function f.
Output: sim(s, t).

We will see two algorithms for this problem.
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Exhaustive search

Algorithm 1: Exhaustive search

1. consider every possible alignment of s and t
2. for each of these, compute its score

3. output the maximum of the scores computed
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Algorithm Exhaustive search for global alignment
Input: strings s, t, with |s| = n,|t| = m; scoring function
Output: value sim(s, t)

1. int max = (n+ m)g; //g is the cost of a gap
2. for each alignment A of s and t (in some order)

3. do if score(A) > max

4. then max < score(A);

5. return max;

Note:
1. The variable max is needed for storing the highest score so far seen.

2. The initial value of max is the score of some alignment of s, t (which one?)
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Number of alignments

List all alignments of s = AC and t = GA.
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List all alignments of s = AC and t = GA.

Number of alignments

You should have got these 13 al's:

GA-

AC
GA

AC-
-GA

A-C
GA-

A-C
-GA

G-A

A--C
—GA-

—-AC-
G—-A

-A-C
G-A-
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Number of alignments

Question
How many alignments are there in general for two strings s and t?
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Let N(n, m) = number of al's of two strings of length n and m.
We know:
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Number of alignments

Question

How many alignments are there in general for two strings s and t?

Observation
The number of alignments depends only on the length of s and t.

Def.

Let N(n, m) = number of al's of two strings of length n and m.
We know:

o N(2,2) =13

e N(1,1) =3

e N(n,0)=1, N(O,m) =1

e we set: N(0,0) =1 (empty alignment)
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Number of alignments

N(n,m)| 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 3
2 1 13
3 1
4 1
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Number of alignments

Look at the last column of the alignments:

GA-

AC
GA

AC-
-GA

A-C

GA-

-GA

AC-
G-A

A--C
—GA-

-AC-
G--A

A-C-
-G-A
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Number of alignments

We have a recursive formula:

e N(n,0)=N(0,m) =1 forn,m>0

e and for n,m > 0:

N(n,m)=N(n—1,m)+N(n—1,m—1)+ N(n,m—1)
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N(n, m)

Number of alignments

1 2 3
1 1 1
3

13
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N(n, m)

Number of alignments

1 2 3
1 1 1
3 5
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Number of alignments

1 2 3
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N(n, m)

Number of alignments

1 2 3
1 1 1
3 5 7
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Number of alignments

N(n, m) 1 2 3 4 5
0 1 1 1 1 1
1 3 5 7 9 11
2 5 13 25 41 61
3 7 25 63 129 231
4 9 41 129 321 681
5 11 61 231 681 1683
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Number of alignments

Let's look at the case n = m:

n |01 2 3 4 5 ... 1000
N(n,n)|1 3 13 63 321 1683 ... ~107%
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Number of alignments

Let's look at the case n = m:

n |01 2 3 4 5 ... 1000
N(n,n)|1 3 13 63 321 1683 ... ~107%

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:
For any al. A, we have max(n, m) < |A| < (n+ m), thus:

N(n, m) - max(n, m) < no. of steps of algo. < N(n,m) - (n+ m)

Therefore, it has exponential running time: too slow!
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A Dynamic Programming Algorithm

Dynamic Programming

is a class of algorithms (like greedy, divide and conquer, . ..)

applicable when solution can be constructed from solutions of
subproblems

subproblem solutions re-used several times

uses a matrix (" DP-table”) for storing subproblem solutions
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Smaller subproblems

Crucial idea
If A is an optimal alignment, then B, the same alignment without the last
column, is also optimal.

Proof
By contradiction (see board).
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Smaller subproblems

Crucial idea
If A is an optimal alignment, then B, the same alignment without the last
column, is also optimal.

Proof

By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes
of s and t, and construct an optimal alignment from that!
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The DP-table

Algorithm 2: Needleman-Wunsch algorithm for global alignment

e construct a DP-table D of size (n+1) x (m+1) s.t.
D(i,j) = sim(sy...sj, t1 ... t))

(We will see in a moment how!)

e return D(n, m)
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Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:

1. last column is (**)
2. last column is (3*)

3. last column is (;n)
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Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:

1. last column is (**)

2. last column is (i:)

3. last column is (;m)

Recall that if A is optimal, then so is B = (A without last column)!
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Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:
1. last column is (S_“)
Sn

2. last column is (tm)

3. last column is ()
Recall that if A is optimal, then so is B = (A without last column)!

e incase 1, Bis an opt. al. of s4...8,_1 and t4...t,
e in case 2, Bis an opt. al. of s4...8p_1 and tq...ty_1

e in case 3, B is an opt. al. of s4...8, and tq...ty_1
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Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know

° sim(sl...sn_l,tl...tm)
° sim(sl...sn,l,tl...tm,l)
o sim(sl...sn,tl...tm_l)

and add the score of the last column!
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Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know

e sim(sy...8p—1,t1...tn) =D(n—1,m)
° sim(sl...sn,l,tl...tm,l) = D(n —1,m-— 1)
e sim(sy...Sp,t1...tn—1) =D(n,m—1)

and add the score of the last column!
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Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know
e sim(sy...8p—1,t1...tn) (n—1,m)

=D
° sim(sl...sn,l,tl...tm,l) = D(n —1,m-— 1)
e sim(sy...Sp,t1...tn—1) =D(n,m—1)

and add the score of the last column!

D(”—l,m)+gap
D(n, m) = max D(n — 17 m— 1) + {matCh if s, =t

mismatch if s, # tn,

D(n,m—1) + gap
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Constructing solutions from smaller subproblems

Now we can compute all entries of D:
e D(i,0)=i-gap fori>0
e D(0,j)=j-gap forj>0
e recursion (for i,j > 0):
D(i —1,j) + gap
D(i,j) = max D(i—l,j—l)—i—{

D(iaj_ 1)+gap

match if ;=1

mismatch if s; # t;
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Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i,j) C A T
0 1 2 3
0 0 -1 -2 -3

A 1] -1

C 21 =2

C 3| -3

T 4| -4
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Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i,j) C A T
0 1 2 3
o, 0o -1 -2 -3
A1 -1 1
¢ o2 =2
c 3| -3
T 4| —4

D(1,1) = max{-1-1,0—1,-1—1} = -1
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Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i,j) C A T
0 1 2 3
o, 0o -1 -2 -3
A1 -1 1 1
¢ o2 =2
c 3| -3
T 4| —4

D(1,1) = max{-1-1,0-1,-1—1} = =1 D(1,2) = max{—2—1,-142,-1-1} =1
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s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i,j) C A T
0 1 2 3

0 0 -1 -2 -3

A 1] -1 -1 1 0

C 2| =2 1 0 0

C 3| -3 0 0 1

T 4| —4 -1 -1 2
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Needleman-Wunsch DP algorithm for global alignment

Variant which outputs sim(s, t) only.

Algorithm DP algorithm for global alignment

Input: strings s, t, with |s| = n, [t| = m; scoring function f
Output: value sim(s, t)

1. for j=0to mdo D(0,)) <+ j-g;

2. fori=1tondo D(i,0)« i-g;

3. fori=1tondo

4 for j =1 to mdo

5. D(i,j) <= max{ D(i —1,j — 1) + f(si, tj)
D(i,j—1)+g

6. return D(n, m);
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Needleman-Wunsch DP algorithm for global alignment

e Algorithm first introduced by Needleman & Wunsch (1970).

o Different orders of computation are possible: necessary to compute
D(i—1,j),D(i—1,j—1), and D(i,j — 1) before D(i, )

e Time: O(n-m)
(initialize first row and column in constant time, for the remaining n- m cells, we
have 3 lookups and additions, so a constant number of operations)

e Space: O(n-m)
(matrix of size (n+ 1)(m + 1))

e for n = m, we get time and space O(n?), hence this is called a
quadratic (time and space) algorithm

e Space-saving variant exists (later)
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Finding an optimal alignment

Recall Variant 2: not only sim(s, t), but also an optimal alignment.
Backtrace in DP-table

e possibility 1: find correct path, redoing computation (more time)

e possibility 2: compute backtracing table during main algorithm (more
space)

Analysis

e poss. 1: time: up to 3 operations per column of alignment computed,
so O(length of alignment) = O(n+ m), or O(n) if n = m; space:
only additional space for the output alignment: O(n+ m)

e poss. 2: time: one operation per column of alignment, so O(n + m);
space: additional O(n - m) space for matrix containing traceback
pointers
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Finding an optimal alignment

N.B.

1. Typically we want only one optimal alignment

2. Order of computation matters for output!

Re 1:

There could be an exponential number of optimal alignments, see

s = AAAA. .- AAA = A?" t = A", then every alignment of length 2n (i.e.
aligning each character of t with some character of s, and aligning the
remaining n characters of s with gaps) is optimal. But there are (2n") > 2"
such alignments.
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Algorithm Backtracing in DP-table (without traceback pointers)
Input: strings s, t with |s| = n, |t| = m; scoring function f; DP-table
Output: an optimal alignment A of sim(s, t)

1. i< n;j< m; A<+ empty alignment;

2. while (i >0 andj > 0)

3 do if D(i,j)=D(i —1,j) + g

4 then A + (%) A;

5. i i—1;

6. else if D(i,j)=D(i —1,j — 1)+ f(si, tj)

7 then A « (:J)A

8 P i1 -1

9. else A« ([)A;

10. jejgl

11. if i >0 then A+ (°%)4;

12. if j > 0 then A « (;:::;)A;

13. return A;

20 / 34



Space-saving variant

e For computing row i, we only need row j — 1
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Space-saving variant

For computing row i, we only need row / — 1
after having finished computing row 7, we never need row i — 1 again
so we can overwrite row /i — 1 after having finished row i

Altogether, at any given time, we only need the current row and the
previous row.

The same could be done with two columns instead of two rows.
Space: O(min(n, m)), for n = m: O(n)

Time: O(nm) (resp. O(n?)), since we still need to compute all
(n+ 1)(m+ 1) entries

This variant does not allow to compute an optimal alignment! (i.e.
does not solve variant 2 of the problem)
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Local alignment

Local alignment

o Often what we are interested in are so-called regions of high similarity
in the two input strings, i.e. substrings which are similar, and not how
similar the entire two strings are.

e So we want to find substrings s’ of s, and t/ of t s.t.
sim(s’,t") = max{sim(u, v) : u substring of s, v substring of t}.

e Typically here we also want to know all such pairs of substrings
themselves and their alignment, not only their similarity value.

31/ 34



Smith-Waterman DP algorithm for local alignment

Smith-Waterman DP-algorithm (1981).

Algorithm similar to NW-algorithm for global alignment.
Crucial points:
1. for each pair of indices i, j, compute the highest score of an alignment
of any substring u ending in position i of s with any substring v ending
in position j of t
2. the empty string is always a substring (in every position), and score of
empty alignment = 0
3. so all entries > 0
4. for the final output: find the maximum over all entries of the matrix

Now we maximize like before and over 0:
L(lv./) = max{l‘(l_ 17./)+g7 L(I—]_,J—].)—i-f(S,, tj)v L(’aJ_ 1)+g70}
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Smith-Waterman DP algorithm for local alignment

Algorithm DP algorithm for local alignment

Input: strings s, t, with |s| = n, [t| = m; scoring function f
Output: value max

1. for j=0to mdo L(0,j)) + 0;

2. for i=1to ndo L(i,0) « 0;

3. fori=1tondo

4, for j =1 to mdo

L(i—1,j—1)+ f(s;, t
5 L(i,])  max (i=1,j = 1)+ f(si. 1)
L(i,j—1)+g

Question: How do we compute max in line 6.7
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Smith-Waterman DP algorithm for local alignment

Finding all optimal local alignments

e Find all occurrences of max{L(i,j) : 0<i<n,0<j<m}

e from each, backtrace until reaching a 0

Analysis

e O(nm) time and space for computing matrix L

e O(K) time for finding all optimal local alignments, where
K = 3" A opt. local al. |4 is the sum of the lengths of the optimal local
alignments, i.e. the output size.
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