Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2017/18, spring term

Fragment Assembly with de Bruijn Graphs!

These slides mainly based on Compeau, Pevzner, Tesler: How to apply de Bruijn
graphs to genome assembly, Nature Biotechnology 29 (11).

Sequencing of a genome

From the DNA molecules (input of experiment) we want to get the
sequence of the nucleotides (desired output).

I:r> .. .AACAGTACCATGCTAGGTCAATCGA. ..
.. .TTGTCATGGTACGATCCAGTTAGCT. ..

2/ 27

Sequence assembly

Molecule (many identical copies) broken up into fragments.

many
identical
copies

\
\\\

3/ 27

Sequence assembly

(also called Fragment Assembly Problem)

Input:
Many short sequences/strings (the fragments).

Goal:

Reconstruct original string (the target sequence).

4/ 21

Overlap graph approach

(Recall from the first module of this course)

Previous approach (Sanger sequencing technology)

Shortest common superstring = a heaviest path in the overlap graph of
F = {TACC, ACTAC, CGGACT, ACGGA} = a heaviest Hamiltonian path.

a=TACC @ * > ® c=CGGACT
A

v
- 1
b=ACTAC® ~ » ® 0=ACGGA

5 /27

Sanger sequencing vs. short read sequencing (NGS)

NGS
Next generation sequencing technologies (Illumina, 454, SOLID, ...)
generate a much larger number of reads

e high-throughput: fast acquisition, low cost
e lower quality (more errors)
e short reads (lllumina: typically 60-100 bp)

e much higher number of reads

While overlap graph approach (with many additional details and
modifications!) worked for Sanger type sequences, it no longer works for
NGS data. Reason: Input too large, no efficient algorithms exist (efficient
= polynomial time in input size), since SCS (and all other problem
variants) are NP-hard.

6/ 27

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

7/27

Solution: Use Euler cycle/path approach

Solution:

Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Euler cycle/path vs. Hamiltonian cycle/path

e Hamiltonian cycle/path: uses every vertex exactly once
e Euler cycle/path: uses every edge exactly once

7/27

Solution: Use Euler cycle/path approach

Solution:

Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Euler cycle/path vs. Hamiltonian cycle/path

e Hamiltonian cycle/path: uses every vertex exactly once
e Euler cycle/path: uses every edge exactly once

Fact
Finding an Euler cycle (or Euler path) can be solved in polynomial time.

7/27

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Euler cycle/path vs. Hamiltonian cycle/path

e Hamiltonian cycle/path: uses every vertex exactly once
e Euler cycle/path: uses every edge exactly once

Fact
Finding an Euler cycle (or Euler path) can be solved in polynomial time.

But:
We have to find a way of modelling our problem in the right way.

7/27

Recall: Eulerian cycles and the bridges of Konigsberg

8 /27

Recall Euler cycle/path

Theorem

A directed graph has an Euler cycle (=Euler tour) if and only if it is
connected and for all vertices v: indeg(v) = outdeg(v) (i.e. all vertices are
balanced). Such a graph is called Eulerian.

Theorem
A directed graph has an Euler path if and only if
e it is Eulerian, or
e it is connected, there are two vertices s, t, for which
indeg(s) = outdeg(s) — 1 and indeg(t) = outdeg(t) + 1, and all
other vertices are balanced.

9/ 27

Recall Euler cycle/path

Theorem
If G is Eulerian, then an Euler cycle can be found in time O(|E|).

Proof
Use Hierholzer's algorithm:

e Start from any vertex v, go along so far untraversed edges. This is
always possible, because every vertex is balanced.

e Eventually we get back to v (why?). Now if there are still untraversed
edges, then there must be a vertex u in the cycle so far visited which
has untraversed incident edges, since the graph is connected.

o Create a new cycle starting from u, unite the new cycle with the old
one.

e Until no untraversed edges are left.

Note:
Similar for Eulerian path, start from s, will end up in t.

10 / 27

Application to the Fragment Assembly problem

We will use de Bruijn graph for modelling our problem:
e create a de Bruijn graph from the input fragments
e find an Eulerian path in this de Bruijn graph
e this Eulerian path will yield the desired string

11/ 27

De Bruijn graphs

1001

The numbers give the order of the edges in an Eulerian cycle.— Named after
Nicolaas de Bruijn, who introduced these graphs in 1946, for a different problem.

12 /27

Definition of de Bruijn graphs

Let X be our alphabet.
(Eg. X ={A,C,G,T} or X ={0,1} or X = {a,b,c})

Definition?

The de Bruijn graph over ¥ of order k is G = (V,E) s.t. V = ¥¥~! and
(u,v) € Eif up...uxk—1 = v1...vk_p (equivalently, if exists a word

w € T¥ s.t. uis the (k — 1)-length prefix of w and v is the (k — 1)-length
suffix of w).

N.B.
Note that E = ¥*, and that the graph has loops (e.g. (000,000) € E).

2Some people call these de Bruijn graphs of order k — 1.
13 /27

Modelling our problem with de Bruijn graphs

N.B.
For simplicity, for now our sequence to be reconstructed is assumed to be
circular. E.g. bacterial genomes are circular.

a v
» A s
String can be read as: ATGGCGTGCA,

TGGCGTGCAA, GGCGTGCAAT,

14 /27

Definition of de Bruijn (sub)graphs

Let ¥ be our alphabet.

(Eg. X ={A,C,G,T} or X ={0,1} or X = {a,b,c})

Definition

A digraph G = (V, E) is called a de Bruijn (sub)graph of order k if

V C %1 and for all u,v € V: if (u, v) € E then there exists a word

w € XX s.t. uis the (k — 1)-length prefix of w and v is the (k — 1)-length
suffix of w.

Example
u = GCA,v = CAA, w = GCAA.

N.B.

These are subgraphs of the original de Bruijn graph. Many researchers,
esp. in bioinformatics call these graphs a de Bruijn graphs. There exists
also the version with multiple edges (multigraph, later).

15 / 27

Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F.

Example

F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:

16 / 27

Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F.

Example
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.

For k = 3, we get:
AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG.

16 / 27

Modelling our problem with de Bruijn graphs

Now from the k-mers, we generate the (k — 1)-length prefixes and suffixes:
AA, AT, CA, CG, GC, GG, GT, TG. These are the vertices. The edges
are the k-mers.

o F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3
e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
e vertices: AA,AT,CA,CG,GC, GG, GT, TG

17 /27

Modelling our problem with de Bruijn graphs

e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
(remember to only put an edge is the k-mer is present!)
e vertices: AA, AT, CA, CG,GC, GG, GT, TG

18 / 27

Modelling our problem with de Bruijn graphs

e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
(remember to only put an edge is the k-mer is present!)
e vertices: AA, AT, CA,CG, GC, GG, GT, TG

The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA
18 / 27

Comparison to other models

Compare to modelling the same problem with overlap graphs:
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}

\/
b ATGGCGT
RN
GGCGTGC
RN
ATGGCGT A
TGCAATG
5 L1
CAATGGC

(GGCaTGC (CAATGGC NNy
ATGGCGT

Genome: ATGGCGTGCAATGGCGT

Note that not all non-zero weight edges are included in the figure. The numbers
on the edges give a Hamiltonian cycle: ATGGCGTGCA.

19 /27

Comparison to other models
Compare to modelling the same problem with overlap graphs using k-mers
as nodes:

o F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k=3
e k-mers are nodes: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

Put an edge if the overlap equals kK — 1. The numbers on the edges give a

Hamiltonian cycle: ATGGCGTGCA.
20 / 27

Practical strategies for applying de Bruijn graphs: all
k-mers

Generating nearly all k-mers

In reality, only a small fraction of all 100-mers (e.g.) are really sampled.
Solution: Take shorter k than readlength. E.g. if reads have length approx.
100, then taking k = 55 will yield nearly all k-mers of the genome.

Ex.

In the example, not all 7-mers are present as reads, but all 3-mers are:
e genome: ATGGCGTGCA
e 7-mers: ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG
e 3-mers: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

21/ 27

Practical strategies for applying de Bruijn graphs: errors

Errors is reads result in bubbles (= bulges) in the de Bruijn graph.

ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT
CLENaENatNa! PENELNE N
e e O/ (e O

AATG

(a GGAG . GAGT
TGGA AGTG
@ ATGG GGC mGGCG f-\G(GT QCGTG f‘\ GTGC @TGCA /‘\GCAA @ CAAT @

b

This can be detected and handled, using multiplicity of k-mers
(multigraphs!), see next slide.

22 / 27

Practical strategies for applying de Bruijn graphs: errors
Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This can be
detected and handled via multiplicity of k-mers (multigraphs!) or of (k — 1)-mers

linear stretches (blocks) GATT
(23]
.
TGAG ATGA GATG CGAT CCGA TCCGC ATCC GATC | AGAT
(8x) (8x) (5x) (6x) (Tx} (Tx)} (Tx) (Bx) \(Bx)
B . . e B s o -
[- - S \ RGAA
GCTC CTICT TCTA CTAG / [1x)

() (lx) (Zm) (Ze) e —ee -
TAGT AGTC GTCG TOGA ' CGAG GAGG AGGC GGCT ™ “TAGA AGAG GAGAR AGAC GACA ACAG

e ——
(3x) (Tx) (9%) (10x)\(8x) (16x) (16x) (11X) gorr crTr TTTA Trac (16X) (9%) (12x) (9x) (Bx} (5x)
; ——

CGAC GACG ACGC 18x) (8x) (8x) (12x)

(1x) (1x) (1x) ‘

TAGTCGA CGAG
- -

.
TAGH

.
GCTTTAG

—
CGACGC

E.g. the software Velvet (Zerbino and Birney, 2008) uses detection and

elimination of bubbles and tips.
23 /27

Practical strategies for applying de Bruijn graphs: repeats

Genome: ATGCGGTGCGTGGCAATG

Repeats can be detected using multiplicity of k-mers (edges). Again, using
multigraphs (edges have multiplicities).

24 / 27

Eulerian cycles in multigraphs

Theorem

A connected multigraph is Eulerian (has an Eulerian cycle) if and only if
every vertex is balanced.

Now indegree = sum of multiplicities of incoming edges (= number of
incoming edges counted with their multiplicities), outdegree defined
similarly.

Recall the Bridges of Konigsberg problem, that's a multigraph.

25 / 27

Sequencing By Hybridization

Origin of de Bruijn graph approach to Fragment Assembly:
Sequencing By Hybridization (SBH)

suggested as alternative to SCS approach (Pevzner, 1988)
DNA chip (DNA array) with all k-mers

size 4k

entry (u, v) lights up if and only if uv is in the sample

so we get a set (multiset?) of k-mers in the sample

26 / 27

Problems with Sequencing By Hybridization

SBH did not work because

e lack of fidelity of hybridization (mismatches!)

e array size: if longer k, better fidelity, but then array gets too big!
(exponential in k)
array size limited with current technology

e not practical (at present)

e But: it introduced the vastly successful approach of de Bruijn graphs
to fragment assembly

27 / 27

