
Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology

a.a. 2015/16, fall term

Computational e�ciency II

Computational e�ciency of an algorithm is measured in terms of running
time and storage space.

To abstract from

• specific computers (processor speed, computer architecture, . . .)

• specific programming languages

• . . .

we measure

• running time in number of (basic) operations
(e.g. additions, multiplications, comparisons, . . .),

• storage space in number of storage units
(e.g. 1 unit = 1 integer, 1 character, 1 byte, . . .).

2 / 22

Example DP algorithm for global alignment (Needleman-Wunsch), variant
which outputs only sim(s, t).

Algorithm DP algorithm for global alignment
Input: strings s, t, with |s| = n, |t| = m; scoring function (p, g)
Output: value sim(s, t)
1. for j = 0 to m do D(0, j) j · g ;
2. for i = 1 to n do D(i , 0) i · g ;
3. for i = 1 to n do
4. for j = 1 to m do

5. D(i , j) max

8
><

>:

D(i � 1, j) + g

D(i � 1, j � 1) + p(si , tj)

D(i , j � 1) + g

6. return D(n,m);

3 / 22

Analysis of DP algorithm for global alignment:

Time

• for first row: m + 1 operations (line 1)

• for first column: n operations (line 2)

• for each entry D(i , j), where 1 i n, 1 j m: 3 operations;
there are n ·m such entries: 3nm operations (lines 3-5)

• Altogether: 3nm + n +m + 1 operations

Space

• matrix of size (n + 1)(m + 1) = nm + n +m + 1 entries (units)

Equal length strings

If n = m then time = 3n2 + 2n + 1, space = n2 + 2n + 1

4 / 22

Analysis of DP algorithm for global alignment:

Time

• for first row: m + 1 operations (line 1)

• for first column: n operations (line 2)

• for each entry D(i , j), where 1 i n, 1 j m: 3 operations;
there are n ·m such entries: 3nm operations (lines 3-5)

• Altogether: 3nm + n +m + 1 operations

Space

• matrix of size (n + 1)(m + 1) = nm + n +m + 1 entries (units)

Equal length strings

If n = m then time = 3n2 + 2n + 1, space = n2 + 2n + 1

4 / 22

Let’s compare this with the other algorithm we saw for global alignment:

Exhaustive search

1. consider every possible alignment of s and t

2. for each of these, compute its score

3. output the maximum of these

5 / 22

Algorithm Exhaustive search for global alignment
Input: strings s, t, with |s| = n, |t| = m; scoring function (p, g)
Output: value sim(s, t)
1. int max = (n +m)g ;
2. for each alignment A of s and t (in some order)
3. do if score(A) > max
4. then max score(A);
5. return max ;

Note:

1. The variable max is needed for storing the highest score so far seen.

2. The initial value of max is the score of some alignment of s, t (which one?)

6 / 22

Analysis of Exhaustive search:

Space

• Store one alignment at a time (overwrite with next one)

Recall: if A al. of two strings of length n and m, then

max(n,m) |A| (n +m).

 2(n +m) units of storage (in each fits one integer or character)
(2 bec. there are two rows)

• one storage unit for the variable max , the maximum seen so far: 1
unit of storage

• Equal length strings: space 4n units of storage

7 / 22

Analysis of Exhaustive search:

Time

• for every alignment (line 2.)

no. of al’s

• compute its score (line 3.)

length of al.

For any al. A, we have max(n,m) |A| (n +m), thus:

N(n,m) ·max(n,m) no. of steps N(n,m) · (n +m)

Simplify analysis: Let’s look at two equal length strings |s| = |t| = n:

N(n, n) · n no. of steps N(n, n) · 2n

We have seen: N(n, n) > 2n, so no. of steps � 2n · n.

8 / 22

Analysis of Exhaustive search:

Time

• for every alignment (line 2.) no. of al’s

• compute its score (line 3.) length of al.

For any al. A, we have max(n,m) |A| (n +m), thus:

N(n,m) ·max(n,m) no. of steps N(n,m) · (n +m)

Simplify analysis: Let’s look at two equal length strings |s| = |t| = n:

N(n, n) · n no. of steps N(n, n) · 2n

We have seen: N(n, n) > 2n, so no. of steps � 2n · n.

8 / 22

Analysis of Exhaustive search:

Time

• for every alignment (line 2.) no. of al’s

• compute its score (line 3.) length of al.

For any al. A, we have max(n,m) |A| (n +m), thus:

N(n,m) ·max(n,m) no. of steps N(n,m) · (n +m)

Simplify analysis: Let’s look at two equal length strings |s| = |t| = n:

N(n, n) · n no. of steps N(n, n) · 2n

We have seen: N(n, n) > 2n, so no. of steps � 2n · n.

8 / 22

Time comparison of the two algorithms

So we have, for |s| = |t| = n:

• DP algo: 3n2 + 2n + 1 operations

• Exhaustive search: at least N(n, n) · n operations

Let’s compare the two functions for increasing n:

n 1 2 3 4 5 . . . 10 100 1000

3n2 + 2n + 1 6 17 34 57 86 . . . 321 30 201 3 002 001

N(n, n) · n 3 26 189 1284 8415 . . . ⇡ 80 · 106 ⇡ 2 · 1077 ⇡ 10

700

The DP algorithm is much faster than the exhaustive search algorithm,
because its running time increases much slower as the input size increases.
But how much?

9 / 22

Algorithm analysis

• We measure running time and storage space, measured in no. of
operations and no. of storage units.

• We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

• We are interested in the algorithm’s behaviour for large inputs.

• We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

• We want an upper bound, i.e. on any input how much time/space
needed at most? (worst-case analysis)

10 / 22

Algorithm analysis

• We measure running time and storage space, measured in no. of
operations and no. of storage units.

• We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

• We are interested in the algorithm’s behaviour for large inputs.

• We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

• We want an upper bound, i.e. on any input how much time/space
needed at most? (worst-case analysis)

10 / 22

Algorithm analysis

• We measure running time and storage space, measured in no. of
operations and no. of storage units.

• We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

• We are interested in the algorithm’s behaviour for large inputs.

• We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

• We want an upper bound, i.e. on any input how much time/space
needed at most? (worst-case analysis)

10 / 22

Algorithm analysis

• We measure running time and storage space, measured in no. of
operations and no. of storage units.

• We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

• We are interested in the algorithm’s behaviour for large inputs.

• We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

• We want an upper bound, i.e. on any input how much time/space
needed at most? (worst-case analysis)

10 / 22

Algorithm analysis

• We measure running time and storage space, measured in no. of
operations and no. of storage units.

• We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

• We are interested in the algorithm’s behaviour for large inputs.

• We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

• We want an upper bound, i.e. on any input how much time/space
needed at most? (worst-case analysis)

10 / 22

Consider 3 algorithms A,B, C:

input size n
running t. 10 20 What happened when input doubled?

A n 10

20 doubled

B n2 100

400 quadrupled

C 2n 1024

1 048 576 squared

Now 3 algorithms A0,B0, C0:

input size n
running t. 10 20 What happened when input doubled?

A0 3n 30 60
B0 3n2 300 1200
C0 3 · 2n 3072 3 145 728

11 / 22

Consider 3 algorithms A,B, C:

input size n
running t. 10 20 What happened when input doubled?

A n 10 20 doubled
B n2 100 400 quadrupled
C 2n 1024 1 048 576 squared

Now 3 algorithms A0,B0, C0:

input size n
running t. 10 20 What happened when input doubled?

A0 3n 30 60
B0 3n2 300 1200
C0 3 · 2n 3072 3 145 728

11 / 22

Consider 3 algorithms A,B, C:

input size n
running t. 10 20 What happened when input doubled?

A n 10 20 doubled
B n2 100 400 quadrupled
C 2n 1024 1 048 576 squared

Now 3 algorithms A0,B0, C0:

input size n
running t. 10 20 What happened when input doubled?

A0 3n 30 60 doubled
B0 3n2 300 1200 quadrupled
C0 3 · 2n 3072 3 145 728 1/3 of squared

11 / 22

The O-notation allows us to abstract from constants (3n vs. n) and other
details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function f : N! R, then O(f (n)) is the class (set) of functions
g(n) s.t.:

There exists a c > 0 and an n
0

2 N s.t. for all n � n
0

: g(n) c · f (n).

We then say that

g(n) 2 O(f (n)) or g(n) = O(f (n))| {z }
Careful, this is not an ”equality”!

Meaning: “g is smaller or equal than f (w.r.t. growth behaviour)”
“g does not grow faster than f ”

12 / 22

The O-notation allows us to abstract from constants (3n vs. n) and other
details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function f : N! R, then O(f (n)) is the class (set) of functions
g(n) s.t.:

There exists a c > 0 and an n
0

2 N s.t. for all n � n
0

: g(n) c · f (n).

We then say that

g(n) 2 O(f (n)) or g(n) = O(f (n))| {z }
Careful, this is not an ”equality”!

Meaning: “g is smaller or equal than f (w.r.t. growth behaviour)”
“g does not grow faster than f ”

12 / 22

Example

3n2 + 2n + 1 2 O(n2)

Recall definition
g(n) 2 O(f (n)) if
there exists a c > 0 and an n

0

2 N s.t. for all n � n
0

: g(n) c · f (n).

Proof

Choose c = 4 and n
0

= 3. We have: 8n � 3 : 3n2 + 2n + 1 4n2.

n 1 2 3 4 5
3n2 + 2n + 1 6 17 34 57 86

4n2 4 16 36 64 100

3n2 + 2n + 1 4n2

, n2 � 2n � 1 � 0

, (n � 1)2 � 2 � 0

, (n � 1)2 � 2

, n � 3

13 / 22

Example

3n2 + 2n + 1 2 O(n2)

Recall definition
g(n) 2 O(f (n)) if
there exists a c > 0 and an n

0

2 N s.t. for all n � n
0

: g(n) c · f (n).

Proof
Choose c = 4 and n

0

= 3. We have: 8n � 3 : 3n2 + 2n + 1 4n2.

n 1 2 3 4 5
3n2 + 2n + 1 6 17 34 57 86

4n2 4 16 36 64 100

3n2 + 2n + 1 4n2

, n2 � 2n � 1 � 0

, (n � 1)2 � 2 � 0

, (n � 1)2 � 2

, n � 3

13 / 22

3n2 + 2n + 1 2 O(n2): 8n � 3 : 3n2 + 2n + 1 4n2

plot: WolframAlpha

14 / 22

3n2 + 2n + 1 2 O(n2): 8n � 3 : 3n2 + 2n + 1 4n2

plot: WolframAlpha

14 / 22

plot: WolframAlpha

15 / 22

plot: WolframAlpha

16 / 22

In practice:

• identify which input parameters are important: no. months n for
Fibonacci numbers; length of strings n,m for pairwise al.

• order additive terms according to these in decreasing growth order:
3n5 + 2n3 + n + 7,
3nm + n +m + 1

• take largest without multiplicative constant:
3n5 + 2n3 + n + 7 2 O(n5),
3nm + n +m + 1 2 O(nm)

17 / 22

Important O-classes

The most important functions, ordered by increasing O–classes: each function fi
is in the O–class of the next function fi+1

, but fi+1

(n) /2 O(fi (n)).

1 log log n log n
p
n n n log n n2 n3 2

n n! nn

cons- loga- linear quad- cubic expo-

tant rith- ratic nen-

mic tial

polynomial (of the form nc for some constant c)
(all except n log n are polynomials)

E F F I C I E N T

1

ine�cient

function grows slower ! function grows faster
faster algorithm slower algorithm

1

also called feasible vs. infeasible

18 / 22

Amount of time an algorithm of time complexity f (n) would need on a
computer that performs one million operations per second:

f (n) n = 50 n = 100 n = 200

n 5 · 10�5 s 10�4 s

2 · 10�4 s

n2 0.0025 s 0.01 s

0.04 s

n3 0.125 s 1 s

8 s

1.1n 0.0001 s 0.014 s

190 s

2n 35.7 years 4 · 1016 years

5 · 1046 years

Compare to:

Age of the universe ⇡ 4.3 · 1017 s ⇡ 1.4 · 1010 years

(source: WolframAlpha)

19 / 22

Amount of time an algorithm of time complexity f (n) would need on a
computer that performs one million operations per second:

f (n) n = 50 n = 100 n = 200

n 5 · 10�5 s 10�4 s 2 · 10�4 s
n2 0.0025 s 0.01 s 0.04 s
n3 0.125 s 1 s 8 s
1.1n 0.0001 s 0.014 s 190 s
2n 35.7 years 4 · 1016 years 5 · 1046 years

Compare to:

Age of the universe ⇡ 4.3 · 1017 s ⇡ 1.4 · 1010 years

(source: WolframAlpha)

19 / 22

On a 1000 times faster computer:

f (n) n = 50 n = 100 n = 200

n 5 · 10�8 s 10�7 s 2 · 10�7 s
n2 2.5 · 10�6 s 10�5 s 4 · 10�5 s
n3 1.25 · 10�4 s 10�3 s 8 · 10�3 s
1.1n 1.1 · 10�7 s 1.4 · 10�5 s 0.19 s
2n 13 days 4 · 1013 years 5 · 1043 years

Age of the universe ⇡ 4.3 · 1017 s ⇡ 1.4 · 1010 years

20 / 22

Looking at it in a di↵erent way . . .

1 2 3 4 5 . . . 10 20 100 1000 106

n 1 2 3 4 5 . . . 10 20 100 1000 106

n2 1 4 9 16 25 . . . 100 400 10000 106

2n 2 4 8 16 32 . . . 1024 ⇡ 106 ⇡ 1030 ⇡ 10301

On a computer that can perform one million operations per second, in a
second,

• a linear-time algorithm can solve a problem instance of size 106 (one
million) (e.g. fib2, fib3),

• a quadratic-time algorithm one of size 1000 (one thousand),

• an exponential-time algorithm one of size 20 (e.g. fib1).

In fact, on any computer, these algorithms need always the same amount
of time for problem instances of such di↵erent sizes!

21 / 22

Back to the global alignment algorithms:

• A(n) := 3n2 + 2n + 1 running time of DP algo

• B(n) := n · N(n, n) running time of exhaustive search algo

1 2 3 4 5 . . . 10 20 100 1000

A(n) 6 17 34 57 86 . . . 321 1241 30 201 3 002 001

B(n) 3 26 189 1284 8415 . . . ⇡ 80 · 106 ⇡ 5 · 1016 ⇡ 2 · 1077 ⇡ 10

700

n 1 2 3 4 5 . . . 10 20 100 1000

n2 1 4 9 16 25 . . . 100 400 10 000 10

6

2

n
2 4 8 16 32 . . . 1024 ⇡ 10

6 ⇡ 10

30 ⇡ 10

301

• A(n) 2 O(n2) a quadratic time algorithm

• B(n) is super-exponential time

Age of the universe ⇡ 4.3 · 1017 s ⇡ 1.4 · 1010 years

e.g. 5 · 1016 op’s = 5 · 107s ⇡ 575 days, if we have 1 billion (10

9

) ops/s

22 / 22

