Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology a.a. 2015/16, fall term

Computational efficiency II

Computational efficiency of an algorithm is measured in terms of running time and storage space.

To abstract from

- specific computers (processor speed, computer architecture, ...)
- specific programming languages
- . . .

we measure

- running time in number of (basic) operations (e.g. additions, multiplications, comparisons, ...),
- storage space in number of storage units (e.g. 1 unit = 1 integer, 1 character, 1 byte, ...).

2 / 22

Example DP algorithm for global alignment (Needleman-Wunsch), variant which outputs only sim(s, t).

Algorithm DP algorithm for global alignment Input: strings s, t, with |s| = n, |t| = m; scoring function (p, g)Output: value sim(s, t)1. for j = 0 to m do $D(0, j) \leftarrow j \cdot g$; 2. for i = 1 to n do $D(i, 0) \leftarrow i \cdot g$; 3. for i = 1 to n do 4. for j = 1 to m do 5. $D(i, j) \leftarrow \max \begin{cases} D(i - 1, j) + g \\ D(i - 1, j - 1) + p(s_i, t_j) \\ D(i, j - 1) + g \end{cases}$

(line 2)

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1)
- for first column: *n* operations (line 2)
- for each entry D(i,j), where $1 \le i \le n, 1 \le j \le m$: 3 operations; there are $n \cdot m$ such entries: 3nm operations (lines 3-5)
- Altogether: 3nm + n + m + 1 operations

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1)
- for first column: *n* operations
- for each entry D(i,j), where $1 \le i \le n, 1 \le j \le m$: 3 operations; there are $n \cdot m$ such entries: 3nm operations (lines 3-5)
- Altogether: 3nm + n + m + 1 operations

Space

• matrix of size (n+1)(m+1) = nm + n + m + 1 entries (units)

Equal length strings

return D(n, m);

6.

If n = m then time $= 3n^2 + 2n + 1$, space $= n^2 + 2n + 1$

Let's compare this with the other algorithm we saw for global alignment:

Exhaustive search

- 1. consider every possible alignment of \boldsymbol{s} and \boldsymbol{t}
- 2. for each of these, compute its score
- 3. output the maximum of these

Algorithm Exhaustive search for global alignment **Input:** strings *s*, *t*, with |s| = n, |t| = m; scoring function (p, g)**Output:** value sim(s, t)

- int max = (n + m)g; 1.
- 2. for each alignment A of s and t (in some order)
- 3. do if score(A) > max
- 4. then $max \leftarrow score(A)$;
- 5. return max;

Note:

- 1. The variable *max* is needed for storing the highest score so far seen.
- 2. The initial value of max is the score of some alignment of s, t (which one?)

Analysis of Exhaustive search:

Space

• Store one alignment at a time (overwrite with next one) Recall: if \mathcal{A} al. of two strings of length n and m, then

$$\max(n,m) \leq |\mathcal{A}| \leq (n+m)$$

 $\leq 2(n + m)$ units of storage (in each fits one integer or character) (2 bec. there are two rows)

- one storage unit for the variable max, the maximum seen so far: 1 unit of storage
- Equal length strings: space $\leq 4n$ units of storage

Analysis of Exhaustive search:

Time

- for every alignment (line 2.)
- compute its score (line 3.)

Analysis of Exhaustive search:

Time

- for every alignment (line 2.) no. of al's • compute its score (line 3.)
 - length of al.

For any al. A, we have $max(n, m) \leq |A| \leq (n + m)$, thus:

 $N(n,m) \cdot \max(n,m) \le \text{no. of steps} \le N(n,m) \cdot (n+m)$

8 / 22

no. of al's

length of al.

6 / 22

8 / 22

7 / 22

Analysis of Exhaustive search:	
Time	

- for every alignment (line 2.)
- compute its score (line 3.)

For any al. A, we have $\max(n, m) \leq |A| \leq (n + m)$, thus:

 $N(n,m) \cdot \max(n,m) \le \text{no. of steps} \le N(n,m) \cdot (n+m)$

Simplify analysis: Let's look at two equal length strings |s| = |t| = n:

 $N(n, n) \cdot n \leq \text{no. of steps} \leq N(n, n) \cdot 2n$

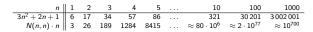
We have seen: $N(n, n) > 2^n$, so no. of steps $\ge 2^n \cdot n$.

Time comparison of the two algorithms

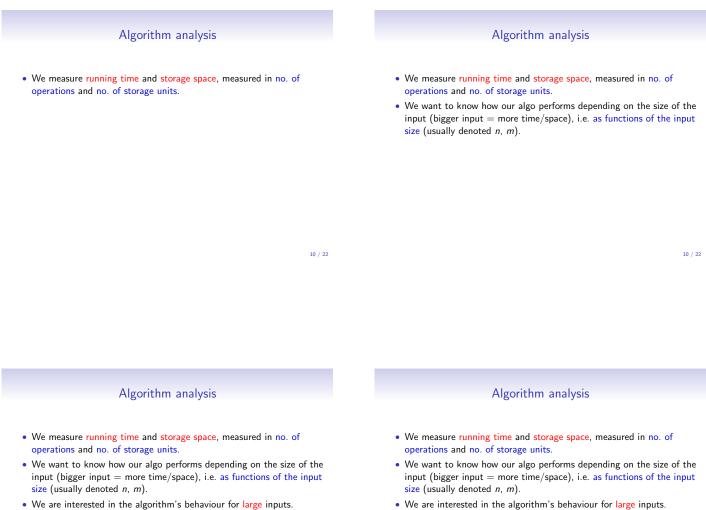
So we have, for |s| = |t| = n:

- DP algo: $3n^2 + 2n + 1$ operations
- Exhaustive search: at least $N(n, n) \cdot n$ operations

Let's compare the two functions for increasing *n*:



The DP algorithm is much faster than the exhaustive search algorithm, because its running time increases much slower as the input size increases. But how much?



• We are interested in the algorithm's behaviour for large inputs.

10 / 22

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input = more time/space), i.e. as functions of the input size (usually denoted n, m).
- We are interested in the algorithm's behaviour for large inputs.
- We want to know the growth behaviour, i.e. how time/space requirements change as input increases.
- We want an upper bound, i.e. on any input how much time/space needed at most? (worst-case analysis)

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input	size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10		
\mathcal{B}	n ²	100		
\mathcal{C}	2 ⁿ	1024		

• We want to know the growth behaviour, i.e. how time/space

requirements change as input increases.

10 / 22

Con	Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:												
		inp	ut size <i>n</i>										
	running t.	10	20	What happened when input doubled?									
\mathcal{A}	n	10	20	doubled									
\mathcal{B}	n ²	100	400	quadrupled									
\mathcal{C}	2 ⁿ	1024	1 048 576	squared									

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n ²	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	squared

Now 3 algorithms $\mathcal{A}', \mathcal{B}', \mathcal{C}'$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}'	3 <i>n</i>	30	60	doubled
\mathcal{B}'	3 <i>n</i> ²	300		quadrupled
\mathcal{C}'	$3 \cdot 2^n$	3072	3 145 728	1/3 of squared

11 / 22

The O-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f: \mathbb{N} \to \mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

The O-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f : \mathbb{N} \to \mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

O(f(n))

We then say that

$$g(n) \in O(f(n))$$
 or $\underbrace{g(n) = O(f(n))}_{\text{Careful, this is not an "equality"}}$

Meaning: "g is smaller or equal than f (w.r.t. growth behaviour)" "g does not grow faster than f"

12 / 22

Example

 $3n^2 + 2n + 1 \in O(n^2)$ Recall definition

 $g(n) \in O(f(n))$ if there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

Example

 $3n^2 + 2n + 1 \in O(n^2)$

Recall definition $g(n) \in O(f(n))$ if

there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

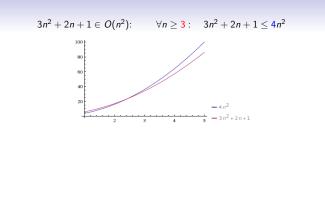
Proof

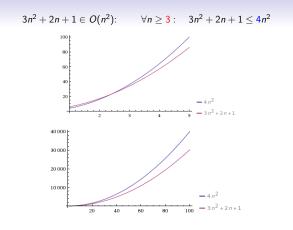
Choose c = 4 and $n_0 = 3$. We have: $\forall n \ge 3$: $3n^2 + 2n + 1 \le 4n^2$.

								$3n^2+2n+1\leq 4n^2$
			3			¢	>	$n^2-2n-1\geq 0$
$3n^2 + 2n + 1$ $4n^2$	6	17	34	57	86	- ⇔	þ	$(n-1)^2 - 2 \ge 0$
4 <i>n</i> ²	4	16	36	64	100	¢	>	$(n-1)^2 \geq 2$
						\Leftrightarrow	>	$n \ge 3$

12 / 22

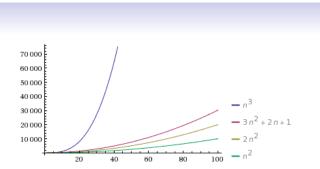
11 / 22

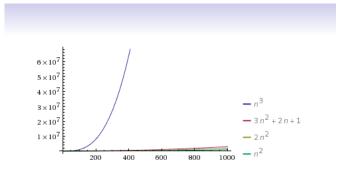




14 / 22

plot: WolframAlpha





plot: WolframAlpha

plot: WolframAlpha

16 / 22

14 / 22

Important O-classes

The most important functions, ordered by increasing O-classes: each function f_i is in the O-class of the next function f_{i+1} , but $f_{i+1}(n) \notin O(f_i(n))$.

1	log log n	log n	\sqrt{n}	n	n log n	n ²	n ³			2 ⁿ	<i>n</i> !	n ⁿ
cons-		loga-		linear		quad-	cubic			expo-		
tant		rith-				ratic				nen-		
		mic								tial		
			poly	/nomial	(of the	form <i>n^c</i>	for som	ne constant c)				
	(all except <i>n</i> log <i>n</i> are polynomials)											
	EFFICIENT									ineffic	ient	

function grows slower	
faster algorithm	

function grows faster slower algorithm

¹also called *feasible* vs. *infeasible*

- identify which input parameters are important: no. months *n* for Fibonacci numbers; length of strings *n*, *m* for pairwise al.
- order additive terms according to these in decreasing growth order: $3n^5 + 2n^3 + n + 7$, 3nm + n + m + 1
- take largest without multiplicative constant: $3n^5 + 2n^3 + n + 7 \in O(n^5)$, $3nm + n + m + 1 \in O(nm)$

15 / 22

Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	n = 100	<i>n</i> = 200
п	$5 \cdot 10^{-5} s$	$10^{-4} { m s}$	
n ²	0.0025 s	0.01 s	
n ³	0.125 s	$1 \mathrm{s}$	
1.1^{n}	0.0001 s	0.014 s	
2 ⁿ	35.7 years	$4\cdot 10^{16}$ years	

Compare to: Age of the universe $\approx 4.3\cdot 10^{17}~\text{s}\approx 1.4\cdot 10^{10}$ years (source: WolframAlpha)

Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	n = 100	n = 200
п	$5\cdot 10^{-5}$ s	10 ⁻⁴ s	$2 \cdot 10^{-4}$ s
n^2	$0.0025 \mathrm{~s}$	0.01 s	0.04 s
n ³	0.125 s	$1 \mathrm{s}$	8 s
1.1^{n}	$0.0001 \mathrm{~s}$	0.014 s	190 s
2 ⁿ	35.7 years	$4\cdot 10^{16}$ years	$5 \cdot 10^{46}$ years

Compare to:

Age of the universe $\approx 4.3 \cdot 10^{17}$ s $\approx 1.4 \cdot 10^{10}$ years (source: WolframAlpha)

19 / 22

19 / 22

On a 1000 times faster computer:

f(n)	<i>n</i> = 50	<i>n</i> = 100	n = 200
n	$5 \cdot 10^{-8} s$	10^{-7} s	$2 \cdot 10^{-7} \text{ s}$
n^2	$2.5 \cdot 10^{-6}$ s	$10^{-5} { m s}$	$4 \cdot 10^{-5}$ s
n ³	$1.25 \cdot 10^{-4}$ s	$10^{-3} { m s}$	$8\cdot 10^{-3}$ s
1.1^{n}	$1.1 \cdot 10^{-7}$ s	$1.4\cdot10^{-5}~{ m s}$	0.19 s
2 <i>ⁿ</i>	13 days	$4\cdot 10^{13}~{\rm years}$	$5\cdot 10^{43}$ years

Age of the universe $\approx 4.3\cdot 10^{17}~\text{s} \approx 1.4\cdot 10^{10}$ years

Looking at it in a different way ...

	1	2	3	4	5	 10	20	100	1000	10 ⁶
n	1	2	3	4	5	 10	20	100	1000	10 ⁶
n^2	1	4	9	16	25	 100	400	10000	10 ⁶	
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	$\begin{array}{c} 1000\\ 10^6\\ \approx 10^{301} \end{array}$	

On a computer that can perform one million operations per second, in a second,

- a linear-time algorithm can solve a problem instance of size 10^6 (one million) (e.g. fib2, fib3),
- a quadratic-time algorithm one of size 1000 (one thousand),
- an exponential-time algorithm one of size 20 (e.g. fib1).

In fact, on any computer, these algorithms need always the same amount of time for problem instances of such different sizes!

20 / 22

21 / 22

Back to the global alignment algorithms:

- $A(n) := 3n^2 + 2n + 1$ running time of DP algo
- $B(n) := n \cdot N(n, n)$ running time of exhaustive search algo

	1	2	3	4	5	 10	20	100	1000
A(n)	6	17	34	57	86	 321	1241	30 201	3 002 001
B(n)	3	26	189	1284	8415	 $pprox 80 \cdot 10^6$	$pprox 5 \cdot 10^{16}$	$pprox 2 \cdot 10^{77}$	$pprox 10^{700}$
n	1	2	3	4	5	 10	20	100	1000
n ²	1	4	9	16	25	 100	400	10 000	10 ⁶
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	$pprox 10^{301}$

• $A(n) \in O(n^2)$ a quadratic time algorithm

• B(n) is super-exponential time

Age of the universe $\approx 4.3\cdot 10^{17}~{\rm s}\approx 1.4\cdot 10^{10}~{\rm years}$ e.g. $5\cdot 10^{16}~{\rm op's}=5\cdot 10^7 s\approx 575$ days, if we have 1 billion (10⁹) ops/s