Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology a.a. 2015/16, fall term

Computational efficiency II

Computational efficiency of an algorithm is measured in terms of running time and storage space.

To abstract from

- specific computers (processor speed, computer architecture, ...)
- specific programming languages

• . . .

we measure

- running time in number of (basic) operations (e.g. additions, multiplications, comparisons, ...),
- storage space in number of storage units

(e.g. 1 unit = 1 integer, 1 character, 1 byte, \dots).

Example DP algorithm for global alignment (Needleman-Wunsch), variant which outputs only sim(s, t).

Algorithm DP algorithm for global alignment **Input:** strings s, t, with |s| = n, |t| = m; scoring function (p, g)**Output:** value sim(s, t) for j = 0 to m do $D(0, j) \leftarrow j \cdot g$; 1. for i = 1 to n do $D(i, 0) \leftarrow i \cdot g$; 2. 3. **for** i = 1 to *n* **do** 4. for j = 1 to m do $D(i,j) \leftarrow \max \begin{cases} D(i-1,j) + g\\ D(i-1,j-1) + p(s_i,t_j)\\ D(i,j-1) + g \end{cases}$ 5.

6. **return** D(n, m);

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1)
- for first column: *n* operations
- for each entry D(i,j), where 1 ≤ i ≤ n, 1 ≤ j ≤ m: 3 operations; there are n ⋅ m such entries: 3nm operations (lines 3-5)
- Altogether: 3nm + n + m + 1 operations

(line 2)

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1)
- for first column: *n* operations
- for each entry D(i,j), where 1 ≤ i ≤ n, 1 ≤ j ≤ m: 3 operations; there are n ⋅ m such entries: 3nm operations (lines 3-5)
- Altogether: 3nm + n + m + 1 operations

Space

• matrix of size (n + 1)(m + 1) = nm + n + m + 1 entries (units)

(line 2)

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1)
- for first column: *n* operations
- for each entry D(i,j), where 1 ≤ i ≤ n, 1 ≤ j ≤ m: 3 operations; there are n ⋅ m such entries: 3nm operations (lines 3-5)
- Altogether: 3nm + n + m + 1 operations

Space

• matrix of size (n + 1)(m + 1) = nm + n + m + 1 entries (units)

Equal length strings If n = m then time $= 3n^2 + 2n + 1$, space $= n^2 + 2n + 1$

(line 2)

Let's compare this with the other algorithm we saw for global alignment:

Exhaustive search

- 1. consider every possible alignment of s and t
- 2. for each of these, compute its score
- 3. output the maximum of these

Algorithm Exhaustive search for global alignment **Input:** strings s, t, with |s| = n, |t| = m; scoring function (p, g)**Output:** value sim(s, t)

- 1. int max = (n + m)g;
- 2. for each alignment A of s and t (in some order)
- 3. **do if** score(A) > max
- 4. **then** $max \leftarrow score(A)$;
- 5. return max;

Note:

- 1. The variable *max* is needed for storing the highest score so far seen.
- 2. The initial value of max is the score of some alignment of s, t (which one?)

Space

• Store one alignment at a time (overwrite with next one) Recall: if A al. of two strings of length n and m, then

 $\max(n,m) \leq |\mathcal{A}| \leq (n+m).$

 $\leq 2(n + m)$ units of storage (in each fits one integer or character) (2 bec. there are two rows)

- one storage unit for the variable *max*, the maximum seen so far: 1 unit of storage
- Equal length strings: space $\leq 4n$ units of storage

Time

- for every alignment (line 2.)
- compute its score (line 3.)

Time

- for every alignment (line 2.)
- compute its score (line 3.)

no. of al's

Time

- for every alignment (line 2.)
- compute its score (line 3.)

no. of al's length of al.

Time

- for every alignment (line 2.)
- compute its score (line 3.)

no. of al's length of al.

For any al. A, we have $\max(n, m) \le |\mathcal{A}| \le (n + m)$, thus:

 $N(n,m) \cdot \max(n,m) \le \text{no. of steps} \le N(n,m) \cdot (n+m)$

Time

- for every alignment (line 2.)
- compute its score (line 3.)

no. of al's length of al.

For any al. A, we have $\max(n, m) \le |\mathcal{A}| \le (n + m)$, thus:

 $N(n,m) \cdot \max(n,m) \le \text{no. of steps} \le N(n,m) \cdot (n+m)$

Simplify analysis: Let's look at two equal length strings |s| = |t| = n:

 $N(n, n) \cdot n \leq \text{no. of steps} \leq N(n, n) \cdot 2n$

We have seen: $N(n, n) > 2^n$, so no. of steps $\ge 2^n \cdot n$.

Time comparison of the two algorithms

So we have, for |s| = |t| = n:

- DP algo: $3n^2 + 2n + 1$ operations
- Exhaustive search: at least N(n, n) · n operations

Let's compare the two functions for increasing *n*:

n	1	2	3	4	5	 10	100	1000
$3n^2 + 2n + 1$	6	17	34	57	86	 321	30 201	3 002 001
$N(n,n) \cdot n$	3	26	189	1284	8415	 $pprox$ 80 \cdot 10 6	$pprox 2 \cdot 10^{77}$	$pprox 10^{700}$

The DP algorithm is much faster than the exhaustive search algorithm, because its running time increases much slower as the input size increases. But how much?

• We measure running time and storage space, measured in no. of operations and no. of storage units.

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input = more time/space), i.e. as functions of the input size (usually denoted *n*, *m*).

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input = more time/space), i.e. as functions of the input size (usually denoted *n*, *m*).
- We are interested in the algorithm's behaviour for large inputs.

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input = more time/space), i.e. as functions of the input size (usually denoted *n*, *m*).
- We are interested in the algorithm's behaviour for large inputs.
- We want to know the growth behaviour, i.e. how time/space requirements change as input increases.

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input = more time/space), i.e. as functions of the input size (usually denoted *n*, *m*).
- We are interested in the algorithm's behaviour for large inputs.
- We want to know the growth behaviour, i.e. how time/space requirements change as input increases.
- We want an upper bound, i.e. on any input how much time/space needed at most? (worst-case analysis)

		input	size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	п	10		
${\mathcal B}$	n ²	100		
\mathcal{C}	2 ⁿ	1024		

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	
\mathcal{B}	n^2	100	400	
\mathcal{C}	2 ⁿ	1024	1048576	

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
${\mathcal B}$	n ²	100	400	
\mathcal{C}	2 ⁿ	1024	1048576	

		inpι	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
${\mathcal B}$	n^2	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
${\mathcal B}$	n ²	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	squared

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
${\mathcal B}$	n^2	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	squared

Now 3 algorithms $\mathcal{A}', \mathcal{B}', \mathcal{C}'$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}'	3 <i>n</i>	30	60	
\mathcal{B}'	3 <i>n</i> ²	300	1200	
\mathcal{C}'	3 · 2 ⁿ	3072	3 145 728	

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
${\mathcal B}$	n^2	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	squared

Now 3 algorithms $\mathcal{A}', \mathcal{B}', \mathcal{C}'$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}'	3 <i>n</i>	30	60	doubled
\mathcal{B}'	3 <i>n</i> ²	300	1200	quadrupled
\mathcal{C}'	3 · 2 ⁿ	3072	3 145 728	1/3 of squared

The *O*-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f : \mathbb{N} \to \mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

The *O*-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f : \mathbb{N} \to \mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

We then say that

$$g(n) \in O(f(n))$$
 or

$$\underbrace{g(n)=O(f(n))}$$

Careful, this is not an "equality"!

The *O*-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f : \mathbb{N} \to \mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

We then say that

$$g(n) \in O(f(n))$$
 or

$$\underbrace{g(n)=O(f(n))}$$

Careful, this is not an "equality"!

Meaning: "g is smaller or equal than f (w.r.t. growth behaviour)" "g does not grow faster than f" Example $3n^2 + 2n + 1 \in O(n^2)$

Example $3n^2 + 2n + 1 \in O(n^2)$

Recall definition $g(n) \in O(f(n))$ if there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

```
Example

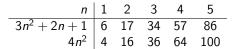
3n^2 + 2n + 1 \in O(n^2)

Recall definition

g(n) \in O(f(n)) if

there exists a c > 0 and an n_0 \in \mathbb{N} s.t. for all n \ge n_0: g(n) \le c \cdot f(n).
```

Proof



Example $3n^2 + 2n + 1 \in O(n^2)$

Recall definition $g(n) \in O(f(n))$ if there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

Proof

Choose c = 4 and $n_0 = 3$. We have: $\forall n \ge 3$: $3n^2 + 2n + 1 \le 4n^2$.

					5	
$3n^2 + 2n + 1$	6	17	34	57	86	•
4 <i>n</i> ²	4	16	36	64	100	

Example $3n^2 + 2n + 1 \in O(n^2)$

Recall definition $g(n) \in O(f(n))$ if there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

Proof

Choose c = 4 and $n_0 = 3$. We have: $\forall n \ge 3$: $3n^2 + 2n + 1 \le 4n^2$.

$$3n^{2} + 2n + 1 \le 4n^{2}$$

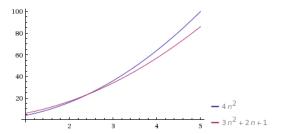
$$\Leftrightarrow \quad n^{2} - 2n - 1 \ge 0$$

$$\Leftrightarrow \quad (n - 1)^{2} - 2 \ge 0$$

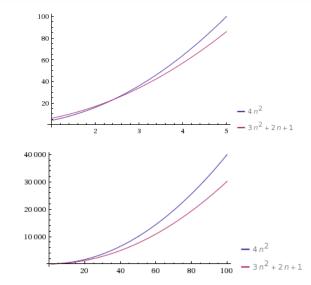
$$\Leftrightarrow \quad (n - 1)^{2} \ge 2$$

$$\Leftrightarrow \quad n \ge 3$$

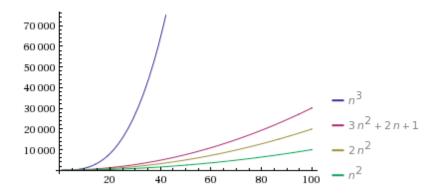
 $3n^2 + 2n + 1 \in O(n^2)$: $\forall n \ge 3$: $3n^2 + 2n + 1 \le 4n^2$



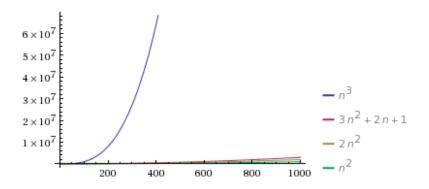
 $3n^2 + 2n + 1 \in O(n^2)$: $\forall n \ge 3$: $3n^2 + 2n + 1 \le 4n^2$



plot: WolframAlpha



plot: WolframAlpha



plot: WolframAlpha

In practice:

- identify which input parameters are important: no. months n for Fibonacci numbers; length of strings n, m for pairwise al.
- order additive terms according to these in decreasing growth order: $3n^5 + 2n^3 + n + 7$, 3nm + n + m + 1
- take largest without multiplicative constant: $3n^5 + 2n^3 + n + 7 \in O(n^5)$, $3nm + n + m + 1 \in O(nm)$

Important O-classes

The most important functions, ordered by increasing O-classes: each function f_i is in the O-class of the next function f_{i+1} , but $f_{i+1}(n) \notin O(f_i(n))$.

1	log log n	log n	\sqrt{n}	n	n log n	n ²	n ³			2 ⁿ	<i>n</i> !	n ⁿ
cons-		loga-		linear		quad-	cubic			expo-		
tant		rith-				ratic				nen-		
		mic								tial		
	polynomial (of the form n^c for some constant c)											
(all except <i>n</i> log <i>n</i> are polynomials)												
E F F I C I E N T ¹										ineffic	ient	

function grows slower faster algorithm \longleftrightarrow

function grows faster slower algorithm

¹also called *feasible* vs. *infeasible*

Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	n = 100	<i>n</i> = 200
n	$5\cdot 10^{-5}$ s	$10^{-4} { m s}$	
n ²	0.0025 s	0.01 s	
n ³	0.125 s	$1 \mathrm{s}$	
1.1^{n}	0.0001 s	0.014 s	
2 ⁿ	35.7 years	$4\cdot 10^{16}~{\rm years}$	

Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	n = 100	<i>n</i> = 200
n	$5\cdot 10^{-5}$ s	$10^{-4} { m s}$	
n ²	$0.0025 \mathrm{~s}$	0.01 s	
n ³	0.125 s	$1 \mathrm{s}$	
1.1^{n}	$0.0001 \mathrm{~s}$	0.014 s	
2 ⁿ	35.7 years	$4\cdot 10^{16}~{\rm years}$	

Compare to: Age of the universe $\approx 4.3 \cdot 10^{17}$ s $\approx 1.4 \cdot 10^{10}$ years (source: WolframAlpha) Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	n = 100	<i>n</i> = 200
n	$5\cdot 10^{-5}$ s	10 ⁻⁴ s	$2\cdot 10^{-4}$ s
n ²	0.0025 s	0.01 s	0.04 s
n ³	0.125 s	$1 \mathrm{s}$	8 s
1.1^{n}	$0.0001 \mathrm{~s}$	0.014 s	190 s
2 ⁿ	35.7 years	$4 \cdot 10^{16} \text{ years}$	$5\cdot 10^{46}~{\rm years}$

Compare to: Age of the universe $\approx 4.3 \cdot 10^{17}$ s $\approx 1.4 \cdot 10^{10}$ years (source: WolframAlpha) On a 1000 times faster computer:

f(n)	<i>n</i> = 50	n = 100	<i>n</i> = 200
n	$5\cdot 10^{-8}$ s	$10^{-7} { m s}$	$2 \cdot 10^{-7} \mathrm{s}$
n ²	$2.5 \cdot 10^{-6} { m s}$	$10^{-5} { m s}$	$4\cdot 10^{-5}~{ m s}$
n ³	$1.25 \cdot 10^{-4} { m s}$	$10^{-3} { m s}$	$8\cdot 10^{-3} \mathrm{~s}$
1.1^{n}	$1.1 \cdot 10^{-7} { m s}$	$1.4\cdot 10^{-5}~{ m s}$	0.19 s
2 ⁿ	$13 \mathrm{~days}$	$4\cdot 10^{13}~{\rm years}$	$5\cdot 10^{43}~{\rm years}$

On a 1000 times faster computer:

f(n)	<i>n</i> = 50	n = 100	<i>n</i> = 200
n	$5\cdot 10^{-8} \mathrm{~s}$	$10^{-7} { m s}$	$2 \cdot 10^{-7} \mathrm{s}$
n ²	$2.5\cdot10^{-6}~{\rm s}$	$10^{-5} { m s}$	$4\cdot 10^{-5}~{ m s}$
n ³	$1.25\cdot 10^{-4}~{\rm s}$	$10^{-3} { m s}$	$8\cdot 10^{-3}$ s
1.1^{n}	$1.1\cdot 10^{-7}~{ m s}$	$1.4\cdot 10^{-5}~{ m s}$	0.19 s
2 ⁿ	$13 \mathrm{~days}$	$4\cdot 10^{13}~{\rm years}$	$5\cdot 10^{43}~{\rm years}$

Age of the universe $\approx 4.3\cdot 10^{17}~\text{s} \approx 1.4\cdot 10^{10}$ years

Looking at it in a different way

	1	2	3	4	5	 10	20	100	1000	10 ⁶
n	1	2	3	4	5	 10	20	100	1000	10 ⁶
n ²	1	4	9	16	25	 100	400	10000	10 ⁶	
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	$\begin{array}{c} 1000\\ 10^6\\ \approx 10^{301} \end{array}$	

Looking at it in a different way

	1	2	3	4	5	 10	20	100	1000	10 ⁶
n	1	2	3	4	5	 10	20	100	1000	10 ⁶
n ²	1	4	9	16	25	 100	400	10000	10 ⁶	
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	$\begin{array}{c} 1000\\ 10^6\\ \approx 10^{301} \end{array}$	

On a computer that can perform one million operations per second, in a second,

- a linear-time algorithm can solve a problem instance of size 10⁶ (one million) (e.g. fib2, fib3),
- a quadratic-time algorithm one of size 1000 (one thousand),
- an exponential-time algorithm one of size 20 (e.g. fib1).

In fact, on any computer, these algorithms need always the same amount of time for problem instances of such different sizes!

Back to the global alignment algorithms:

- $A(n) := 3n^2 + 2n + 1$ running time of DP algo
- B(n) := n · N(n, n) running time of exhaustive search algo

	1	2		4		10	20	100	1000
A(n)	6	17	34	57	86	 321	1241	30 201	3 002 001
B(n)	3	26	189	1284	8415	 $\approx 80\cdot 10^6$	$pprox 5 \cdot 10^{16}$	$pprox 2 \cdot 10^{77}$	$pprox 10^{700}$
n	1	2	3	4	5	 10	20	100	1000
n^2		4	9	16	25	 100	400	10 000	10 ⁶
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	$pprox 10^{301}$

- $A(n) \in O(n^2)$ a quadratic time algorithm
- B(n) is super-exponential time

Age of the universe $\approx 4.3 \cdot 10^{17}$ s $\approx 1.4 \cdot 10^{10}$ years e.g. $5 \cdot 10^{16}$ op's $= 5 \cdot 10^7 s \approx 575$ days, if we have 1 billion (10⁹) ops/s