
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II. semester

Su�x Trees (and other string indexes)1

1Some of these slides are based on slides of Jens Stoye’s.

Text indexes

Let T be a string of length n over alphabet ⌃ (which we refer to as text in

the following).

A text index (or string index) is a data structure built on the text which

allows to answer a certain type of query (e.g. pattern matching) without

traversing the whole text. Typically, we want

1. the index not to use too much space (linear or sublinear in n), and

2. the query time to be fast (ideally: independent of n).

2 / 17

A common string problem: Pattern matching

Pattern matching (aka exact string matching) is at the core of almost

every text-managing application.

Pattern matching
Given a (typically long) string T (the text), and a (typically much shorter)

string P (the pattern) over the same alphabet ⌃, find all occurrences of P

as substring of T .

Variants:

• output all occurrences of P in T — ”all-occurrences version”

• decide whether P occurs in T (yes - no) — ”decision version”

• output the number of occurrences of P in T — ”counting version”

We usually refer to the number of occurrences of P as occP .
3 / 17

Pattern matching

Pattern matching (p.m.)

text: T = T1 . . .Tn of length n,

pattern: P = P1 . . .Pm of length m

• The best non-index-based algorithms solve this problem in time

O(n +m) (e.g. Knuth-Morris-Pratt)

• This is optimal, since one has to read both strings at least once.

• But not tolerable with the data sizes we are seeing now!

• That is why we need text indexes.

4 / 17

The k-mer index

5 / 17

The k-mer index

Recall that a k-mer (or k-gram)

is a string of length k .

k-mer index
Earlier in this course, we saw

the k-mer profile, Pk(s)

(or q-gram profile)

of a string s.

Ex.
s = ACAGGGCA,

on the right is P2(s).

r ur P2(s)

0 AA 0

1 AC 1

2 AG 1

3 AT 0

4 CA 2

5 CC 0

6 CG 0

7 CT 0

8 GA 0

9 GC 1

10 GG 2

11 GT 0

12 TA 0

13 TC 0

14 TG 0

15 TT 0

6 / 17

The k-mer index

Replacing the number of occurrences

by the occurrences themselves,

we get the k-mer index of s.

Ex.
s = ACAGGGCA,

on the right 2-mer index of s.

Analysis (for p.m.)

Space: total space is O(�k
+ n),

since no. of rows = �k
and total

number of entries = n � k + 1.

Time (p.m.): O(k) for decision,

O(k + occP) for all-occurrences.

N.B.: works only for patterns of

length exactly k

r ur k-mer index of s

0 AA
1 AC 1

2 AG 3

3 AT
4 CA 2, 7
5 CC
6 CG
7 CT
8 GA
9 GC 6

10 GG 4, 5
11 GT
12 TA
13 TC
14 TG
15 TT

7 / 17

The k-mer index

Replacing the number of occurrences

by the occurrences themselves,

we get the k-mer index of s.

Ex.
s = ACAGGGCA,

on the right 2-mer index of s.

Analysis (for p.m.)

Space: total space is O(�k
+ n),

since no. of rows = �k
and total

number of entries = n � k + 1.

Time (p.m.): O(k) for decision,

O(k + occP) for all-occurrences.

N.B.: works only for patterns of

length exactly k

r ur k-mer index of s

0 AA
1 AC 1

2 AG 3

3 AT
4 CA 2, 7
5 CC
6 CG
7 CT
8 GA
9 GC 6

10 GG 4, 5
11 GT
12 TA
13 TC
14 TG
15 TT

7 / 17

The su�x tree

8 / 17

The su�x tree

T = BANANA$ (add sentinel character $ /2 ⌃)

labels only conceptual!

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

two pointers into string

[2,2]

[3,4]

[1,7]

[5,7][7,7]

[7,7]

[7,7] [3,4]

[7,7]

[5,7]7

6

4 2

1

5

3

9 / 17

The su�x tree

Given T string over ⌃ (finite ordered alphabet), and $ 62 ⌃.

Definitions

• ST (T) is a rooted tree with edge-labels from (⌃ [{$})+ such that

• the labels of all edges outgoing from a node begin with di↵erent

characters;

• the paths from the root to the leaves of ST (T) spell the su�xes of T$;

• each node in ST (T) is either the root, a leaf, or a branching node;

• L(u) is the path-label of node u: the concatenation of edge labels on

the path from the root to u,

• a leaf v has leaf-label i if and only if L(v) = Ti . . .Tn$ (i ’th su�x),

• sd(v) is the string-depth of a node v is the length of its path-label,

• a locus (u, d) is a position on an edge (v , u) where u is a node of

ST (T) and sd(v) < d sd(u): d is the string-depth of locus (u, d).

10 / 17

• N.B.: the edge labels are not stored explicitly:

• they are represented by two pointers [b, e] into T : beginning and end

of an occurrence of the edge label;

• this representation is not necessarily unique

• e.g. in the example, any edge with label NA can be represented by

[3, 4] or [5, 6]

labels only conceptual!

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

two pointers into string

[2,2]

[3,4]

[1,7]

[5,7][7,7]

[7,7]

[7,7] [3,4]

[7,7]

[5,7]7

6

4 2

1

5

3

11 / 17

Su�x tree properties

• The leaves of ST (T) correspond to the su�xes of T$.

• ST (T) represents exactly the substrings of T$: there is a one-to-one

correspondence between loci in ST (T) (possibly within an edge) and

substrings of T$.

• This allows us to define locus(P) for a substring P of T .

• The leaves in the subtree under a locus(P) correspond to the

(beginning positions of) P’s occurrences in T$: one-to-one

correspondence between leaves in subtree under locus(P) and

occurrences of substring P .

• ST (T) requires O(n) space (details next).

MAGIC!
The su�x tree represents a possibly quadratic number of objects (the

substrings) in linear space!

12 / 17

Space usage of su�x trees

Lemma:
ST (T) requires O(n) space.

Proof sketch:

1. ST (T) has exactly n + 1 leaves (one for each su�x).

2. Each internal node is branching, therefore there are at most n internal

nodes.

3. A tree with at most 2n + 1 nodes has at most 2n edges.

4. Each node can be represented in constant space.

5. Each edge is labeled by a substring of T$ and hence can be

represented by a pair of pointers [i , j] into T$.

13 / 17

The su�x array

14 / 17

The su�x array

Definition
The SA is a permutation of {1, 2, . . . , n+ 1} s.t. SA[i] = j if the j ’th su�x

Sufj = Tj · · ·Tn$ is the i ’th among all su�xes in lexicographic order.

Example: T = BANANA$ SA = [
1
7,

2
6,

3
4,

4
2,

5
1,

6
5,

7
3]

i SA Sufi

1 7 $
2 6 A$
3 4 ANA$
4 2 ANANA$
5 1 BANANA$
6 5 NA$
7 3 NANA$

Note $ is smaller than all other characters.

15 / 17

The su�x array

Su�x tree

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

(Note that children of inner nodes are

ordered acc. to the alphabet’s order.)

Su�x array
SA = [7,6,4,2,1,5,3]

N.B.
When reading the leaves of the

ST from left-to-right, we get

the SA.

One can imagine the su�x

array as the leaves of the su�x

tree that fell down and stayed

in order . . .

16 / 17

Some Applications of Su�x Trees/Su�x Arrays

• exact string matching

• exact set matching

• text statistics

• DNA contamination problem

• common substrings of more than two strings

• matching statistics

• overlap computation (all-pairs prefix-su�x matching)

• exact repeats and palindromes problem

• tandem repeats problem

• shortest unique substring

• maximal unique matches

• approximate string matching (k-mismatch and k-di↵erences)

• computation of the q-gram distance

• Lempel-Ziv data compression

17 / 17

