
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II. semester

Su�x Trees 2

Pattern matching with the su�x tree

2 / 18

Recall: Pattern matching

Pattern matching

Given a string T of length n (the text), and a string P of length m (the

pattern), find all occurrences of P as substring of T .

Variants:

• all-occurrences version: output all occurrences of P in T

• decision version: decide whether P occurs in T (yes - no)

• counting version: output occP , the number of occurrences of P in T

3 / 18

Pattern matching with su�x tree

Let text T = BANANA and pattern P = ANA. We try to match the

pattern starting from the root and following the labels on the edges; when

we encounter a node, we have at most one possible edge which to follow
1
:

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

Since we have matched all of the pattern, we now know that P = ANA

occurs in T (decision).

1recall that every outgoing edge from an inner node starts with a di↵erent character
4 / 18

Pattern matching with su�x tree

Moreover, the occurrences of P are exactly the numbers of the leaves in

the subtree below locus(P) (the position where we finished matching P).

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3
A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

Why is this? Because P occurs in position i i↵ P is a prefix of Sufi . As we

have seen, the path from the root to leaf number i spells exactly Sufi .

5 / 18

Pattern matching with su�x tree

We may end in the middle of an edge, as for P = AN. Still the occurrences

of P are the leaves in the subtree rooted in u, where locus(P) = (u, d).

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3 A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

6 / 18

Pattern matching with su�x tree

The matching could also be unsuccessful, as for P = NAB or P = BAD:

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3 A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

7 / 18

Pattern matching with su�x tree: Analysis

• Time for decision is O(m) (at most one comparison per position of P).

• Time for finding all occurrences: O(m + occP).

Let locus(P) = (u, d): traverse the subtree rooted in u, this takes time linear

in the size of the subtree, which is O(occP), thus altogether O(m + occP).

(Proof for size of subtree: Number of leaves of subtree = occP) number

of inner nodes < occP (since all inner nodes branching)) total number of

nodes < 2occP) number of edges < 2occP � 1) size of subtree

< 4occP .)

• Time for counting: with same algorithm: O(m + occP).

Can be improved to O(m) with linear-time preprocessing of ST (store

in each node u the number of leaves in subtree rooted in u).

Note that all these times are independent of the size n of the text.

8 / 18

Su�x tree construction

9 / 18

Construction of su�x trees

Theorem:

ST (T) can be constructed in O(n) time.

Several linear time algorithms exist (beyond the scope of this course). We

will see two simple quadratic-time construction algorithms.

10 / 18

Simple ST construction algorithm 1

Simple su�x insertion algorithm

1. start with tree T with one node (the root)

2. for i = 1, . . . , n + 1: insert Sufi into T

Insert string S into T

1. ` |S |
2. start matching S (as for pattern matching) in T , starting from root

3. at first mismatch j in S :

• if currently in node u, add new child v to u

• otherwise, create new node u at current locus with new child v

4. add edge label L(u, v) = Sj . . . S`

Note that there is always a mismatch, because no su�x is the prefix of

another su�x (that’s why we chose $ as a new character!)

11 / 18

Simple ST construction algorithm 2

Another simple algorithm is the following recursive algorithm (Giegerich &

Kurtz, 1995):

WOTD algorithm (write-only, top-down)

1. Let X be the set of all su�xes of T$.

2. Sort the su�xes in T according to their first character;

for c 2 ⌃ [{$}: Xc = su�xes starting with character c .

3. For each group Xc :

(i) if Xc is a singleton, create a leaf;

(ii) otherwise, find the longest common prefix of the su�xes in Xc , create

an internal node, and recursively continue with Step 2, X being the set

of remaining su�xes from Xc after splitting o↵ the longest common

prefix.

N.B.: Both of these algorithms have worst-case running time O(n
2
)

(without proof).

12 / 18

Storing addition information in the su�x
tree

13 / 18

Recall the pattern matching problem, counting variant: Return the number of

occurrences of pattern P . Let g(u) = number of leaves in subtree rooted in u.

A

NA

BAN
AN

A$

NA$$

$

$ NA
$

NA$7

6

4 2

1

5

3

11

1

1

3

2 1

1

12

7

If we store g(u) in u, then we can solve the counting problem in O(m) time:

match P in ST, if found in locus(P) = (u, d), then return g(u). E.g. the number

of occurrences of P = AN is 2, as can be seen immediately in ST.

14 / 18

Postorder traversal of ST

Note that the number of leaves in subtree rooted in u, where u has

children v1, . . . , vk , equals the sum of the leaves in the subtrees of the vi .

Compute the number of leaves in subtree, g(u), via post-order traversal of

the ST (bottom-up):

1. if u leaf: g(u) 1

2. if u inner node: g(u) =
P

v child of u g(v)

This takes linear time in the size of the tree, i.e. O(n) time. Moreover, the

information stored is constant per node, so the space needed for the ST is

still O(n).

15 / 18

Another piece of information we often need is the stringdepth sd(u) of a node u

(the length of its label).

A

NA

BAN
AN

A$

NA$$

$

$ NA

$

NA$7

6

4 2

1

5

3

64

2

1

1

3 7

3

52

0

16 / 18

Preorder traversal of ST

Note that the stringdepth of a node u with parent v equals the stringdepth

of v plus the length of the label of the edge connecting v and u.

Compute the stringdepth of a node, sd(u), via pre-order traversal of the

ST (top-down):

1. for the root: sd(root) = 0

2. for all other nodes u: Let v = parent(u).

Then sd(u) = sd(v) + |L(v , u)|.

Again, this takes linear time O(n) and total space O(n) (since we store

constant amount per node).

17 / 18

Summary

• The su�x tree is an extremely versatile data structure for solving

problems on strings/sequences.

• It takes linear storage space in the size of the text O(n).

(Remember: edge labels are stored as two pointers into T .)

• It can be constructed in linear time O(n) (not studied in this course).

• Leaves of ST correspond to su�xes of T .

• Loci (inner nodes or ”positions on edges”) corr. to substrings of T .

• Leaves in subtree rooted in u correspond to occurrences of substrings

whose locus is on edge leading to u.

• The ST can be used to solve pattern matching queries in time

independent of the text size: O(m) for decision, O(m + occP) for

all-occurrences, O(m) for counting (after linear time preproc.)

• The ST can be used to solve many many other types of queries on

strings e�ciently.

18 / 18

