Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2018/19, II semester

Strings and Sequences in Computer Science

Some formalism on strings

- Σ a finite set called alphabet
- its elements are called characters or letters
- $|\Sigma|$ is the size of the alphabet (number of different characters)
- a string over Σ is a finite sequence of characters from Σ
- we write strings as $s = s_1 s_2 \dots s_n$ i.e. s_i is the *i*'th character of s

N.B.: We number strings from 1, not from 0

2/7

Some formalism on strings (cont.)

- |s| is the length of string s
- ullet is the empty string, the (unique) string of length 0
- Σ^n is the set of strings of length n
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$ is the set of all strings over Σ

Some formalism on strings: Examples

Examples

- DNA: $\Sigma = \{A, C, G, T\}$, alphabet size $|\Sigma| = 4$, s = ACCTG is a string of length 5 of Σ , with $s_1 = A$, $s_2 = s_3 = C$, $s_4 = T$, $s_5 = G$.
- RNA: $\Sigma = \{A,C,G,U\}$, again alphabet size is 4
- protein: $\Sigma = \{A,C,D,E,F,\dots,W,Y\}$, alphabet size is 20, ANRFYWNL is a string over Σ of length 8
- English alphabet: $\Sigma = \{a,b,c,\ldots,x,y,z\}$ of size 26, alphabet is a string over Σ of length 8

3/7

4/7

Some formalism on strings

Let $s = s_1 \dots s_n$ be a string over Σ .

ex. s = ACCTG

- t is a substring of s if $t = \epsilon$ or $t = s_i \dots s_j$ for some $1 \le i \le j \le n$ (i.e., a "contiguous piece" of s)
- t is a prefix of s if $t = \epsilon$ or $t = s_1 \dots s_j$ for some $1 \le j \le n$ (i.e., a "beginning" of s)

 AC, ACCTG, ...
- t is a suffix of s if $t = \epsilon$ or $t = s_i \dots s_n$ for some $1 \le i \le n$ (i.e., an "end" of s)
- t is a subsequence of s if t can be obtained from s by deleting some (possibly 0, possibly all) characters from s
 AT, CCT, ...

N.B.

 $\mathsf{string} = \mathsf{sequence}, \ \mathsf{but} \ \mathsf{substring} \neq \mathsf{subsequence}!$

Substrings etc.

N.B.

- Every substring is a subsequence, but not every subsequence is a substring!
 - **Ex.:** Let s = ACCTG, then ACT is a subsequence but not a substring.
- 2. Every prefix and every suffix is a substring.
- 3. t is substring of $s \Leftrightarrow t$ is prefix of a suffix of $s \Leftrightarrow t$ is suffix of a prefix of s

5/7

Counting substrings, subsequences etc.

Question

Given $s=s_1\dots s_n$. How many

- prefixes,
- suffixes,
- substrings,
- subsequences

does s have (exactly, or at most, or at least)?