Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

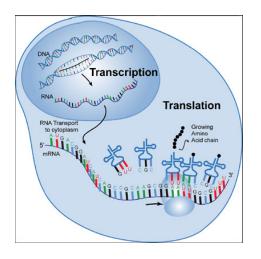
Masters in Medical Bioinformatics academic year 2018/19, II semester

Strings and Sequences in Biology

Strings in molecular biology

Strings are finite sequences over an alphabet Σ (also called *sequences*).

```
• DNA (characters: nucleotides) \Sigma = \{\texttt{A},\texttt{C},\texttt{G},\texttt{T}\} • RNA (characters: nucleotides) \Sigma = \{\texttt{A},\texttt{C},\texttt{G},\texttt{U}\}
```


- proteins (characters: amino acids) $\Sigma = \{A,C,D,E,F,\ldots,W,Y\}$
- many other problems in molecular biology can be modelled by strings (e.g. gene order, SNPs, haplotypes, ...)

DNA: nucleotides

```
5' ...AACAGTACCATGCTAGGTCAATCGA...3'
3' ...TTGTCATGGTACGATCCAGTTAGCT...5'
```

- 4 characters: A C G T: adenine, cytosine, guanine, thymine (bases, nucleotides)
- orientation (read from 5' to 3' end)
- length measured in bp (base pairs)
- double stranded, the two strands are antiparallel
- A T and C G complementary (Watson-Crick pairs)
- reverse complement: $(ACCTG)^{rc} = CAGGT$

The central dogma of molecular biology

source: Wonderwikikids.com

DNA: nucleotides

```
5' ...AACAGTACCATGCTAGGTCAATCGA...3'
3' ...TTGTCATGGTACGATCCAGTTAGCT...5'
```

- during transcription, one strand is copied into mRNA (messenger RNA), except all T's are replaced by U's
- the strand which is identical to the mRNA is called coding strand
- the other strand (the one which is used for the transcription) is called template strand
- Both strands can be used as coding strands (for different genes).
- Some DNA strings are circular: bacterial DNA, mitochondrial DNA.

RNA: nucleotides

- like DNA, except:
- 4 characters: A C U G: adenine, cytosine, uracil, guanine (U instead of T)
- RNA is single-stranded
- builds double stranded hybrids with DNA
- RNA folds upon itself (makes complex 3-dim structures), using the Watson-Crick pairs and other bonds (RNA folding)

Protein: Amino acids

There are 20 common amino acids (aa's); two systems of abbreviations are used: 3-letter-code and 1-letter-code. We usually use the 1-letter-code.

alanine	Ala	Α	leucine	Leu	L
arginine	Arg	R	lysine	Lys	K
asparagine	Asn	N	methionine	Met	Μ
aspartic acid	Asp	D	phenylalanine	Phe	F
cysteine	Cys	C	proline	Pro	Р
glutamine	Gln	Q	serine	Ser	S
glutamic acid	Glu	Ε	threonine	Thr	Т
glycine	Gly	G	tryptophan	Trp	W
histidine	His	Н	tyrosine	Tyr	Υ
isoleucine	lle	1	valine	Val	V

Second letter

	U	С	Α	G						
U	UUU }Phe UUC }Leu UUG }Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	U C A G					
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA Gin	CGU CGC CGA CGG	U C A G					
Α	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA AGA Arg	U C A					
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GIu	GGU GGC GGA GGG	U C A					

Third letter

source: Wikimedia commons

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

```
5' ...TATTCGAATCGGC...3'
```

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code
- silent mutations

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

```
5' ...TATTCGAATCGGC...3'
```

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code: 64 codons but only 20 aa's plus stop codon
- silent mutations

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code: 64 codons but only 20 aa's plus stop codon
- *silent mutations*: if third position mutates, this often does not alter the aa

Exercise:

Translate this DNA sequence according to the 3 different reading frames:

```
5' ...TATTCGAATCGGC...3'
```

Exercise:

Translate this DNA sequence according to the 3 different reading frames:

Solution

- ullet 1st reading frame: TAT, TCG, AAT, CGG, C = Tyr-Ser-Asn-Arg = YSNR
- 2nd reading frame: T, ATT, CGA, ATC, GGC = Ile-Arg-Ile-Gly = IRIG
- 3rd reading frame: TA, TTC, GAA, TCG, GC = Phe-Glu-Ser = FES