The q-gram distance

In many situations, edit distance is a good model for differences / similarity between strings.

• But sometimes, other distance functions serve the purpose better.

The *q*-gram distance

Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2018/19, II. semester

The q-gram distance

- In many situations, edit distance is a good model for differences / similarity between strings.
- But sometimes, other distance functions serve the purpose better.

Motivations for using q-gram distance

- If two parts of a sequence are exchanged (e.g. two paragraphs, two long substrings, two genes), then one can argue that the resulting strings still have high similarity; however, the edit distance will be big. The *q*-gram distance can be more appropriate in this case.
- 2. The edit distance needs quadratic computation time, but this is often too slow. The q-gram distance can be computed in linear time.

2/21

What is a *q*-gram?

Let Σ be the alphabet, with $|\Sigma|=\sigma.$ Def. A $q\text{-}\mathsf{gram}$ is a string of length q.

3 / 21

2/21

What is a *q*-gram?

Let Σ be the alphabet, with $|\Sigma| = \sigma$.

Def.

A q-gram is a string of length q.

Note

q-grams are also called *k*-mers, *w*-words, or *k*-tuples. Typically, q (or k, w, etc.) is small, much smaller than the strings we will want to compare.

We will fix q, and use the number of occurrences of $q\mbox{-}{\rm grams}$ to compute distances between strings.

Occurrence count

Let s be a string of length $n \ge q$, and u be a q-gram. The occurrence count of u in s is

$$N(s, u) = |\{i : s_i \dots s_{i+q-1} = u\}|,$$

the number of times q-gram u occurs in s.

Ex.

Let s = ACAGGGCA and q = 2.

Occurrence count

q-gram profile

Let s be a string of length $n \ge q$, and u be a q-gram. The occurrence count of u in s is

$$N(s, u) = |\{i : s_i \dots s_{i+q-1} = u\}|,$$

the number of times q-gram u occurs in s.

Ex.

Let s = ACAGGGCA and q = 2. Then N(s, AC) = N(s, AG) = N(s, GC) = 1, N(s, CA) = N(s, GG) = 2, and for all other q-grams u over Σ , N(s, u) = 0.

4/21

Fix some enumeration (listing) of Σ^q , i.e. some order in which we want to list all *q*-grams; e.g. the lexicographic order.

Def.

Let s be a string over Σ , $|s| \ge q$. The q-gram profile of s, $P_q(s)$ is an array of size σ^q , where the *i*th entry is

$$P_q(s)[i] = N(s, u_i),$$

and u_i is the *i*th *q*-gram in the enumeration.

5 / 21

E				
Example: Let $\Sigma = \{A, C, G, T\}$ and $q = 2$.	и	$P_q(s)$	$P_q(t)$	$P_q(v)$
	AA	0	1	1
	AC	1	1	1
Let	AG	1	0	1
s = ACAGGGCA,	AT	0	0	0
t = GGGCAACA.	CA	2	2	1
v = AAGGACA.	CC	0	0	0
	CG	0	0	0
Then the q -gram profiles of s, t, v are	CT	0	0	0
shown on the right.	GA	0	0	1
	GC	1	1	0
	GG	2	2	1
Notice that the sum of all entries of	GT	0	0	0
$P_q(s) = s - q + 1 = \text{total number of}$	TA	0	0	0
q-gram occurrences in $s =$ number of	TC	0	0	0
10	TG	0	0	0
distinct positions in <i>s</i> where a <i>q</i> -gram starts.	TT	0	0	0

6/21

q-gram distance

(Introduced by Ukkonen, 1992)

Def.: Given two strings s, t, the *q*-gram distance of s and t is

$$dist_{q-gram}(s,t) = \sum_{u \in \Sigma^q} |N(s,u) - N(t,u)|$$

Equivalent def.: Given two strings s, t, the *q*-gram distance of s and t is

$$\mathit{dist}_{q-\mathit{gram}}(s,t) = \sum_{i=1}^{\sigma^q} |P_q(s)[i] - P_q(t)[i]|$$

which is the Manhattan distance¹ of the q-gram profiles of s and t.

¹The Manhattan distance, or L_1 -distance, of two vectors $x, y \in \mathbb{R}^n$ is defined as $\sum_{i=1}^n |x_i - y_i|$.

7 / 21

q-gram distance

In the previous example (q = 2, s = ACAGGGCA, t = GGGCAACA, and v = AAGGACA), we have

 $\textit{dist}_{2-\textit{gram}}(s,t) = 2, \textit{dist}_{2-\textit{gram}}(s,v) = 5, \text{ and } \textit{dist}_{2-\textit{gram}}(t,v) = 5.$

Note that it is possible to have distinct strings with q-gram distance 0, e.g.

for w = AGGGCACA, we have $dist_{2-gram}(s, w) = 0$.

(Don't just believe this, double check it!)

The q-gram distance is a pseudo-metric

Lemma

The *q*-gram distance is a pseudo-metric, i.e. it is non-negative, symmetric, and obeys the triangle inequality (but it is possible to have $x \neq y$ with $dist_{q-gram}(x, y) = 0$).

Proof:

The three properties follow from the fact that the Manhattan metric is a metric. The example above shows that $dist_{q-gram}(x, y) = 0$ does not imply x = y.

Exercise:

Prove the lemma explicitly.

Connection to edit distance

q-gram Lemma

Let $d_{edit}(s, t)$ denote the (unit-cost) edit distance of s and t. Then

$$rac{{\it dist}_{q-{\it gram}}(s,t)}{2q} \leq d_{{\it edit}}(s,t).$$

Proof

Every edit operation contributes to the *q*-gram distance at most 2*q*: Consider the simplest case, a substitution in position *i* of *s*, where character *s*_i is substituted by character *x*, and let *s'* be the resulting string. If $q \le i \le |s| - q + 1$, then there are exactly *q q*-grams of *s* affected by the substitution: $s_{i-q+1} \dots s_i$, up to $s_i \dots s_{i-q+1}$ (otherwise fewer); the counts of all these are decremented by 1, while the counts of the new *q*-grams $s_{i-1+1} \dots x$, $s_i \dots x_{i+q}$, etc. are incremented by 1. Therefore, $dist_{q-gram}(s, s') \le 2q$ (it could be less because these *q*-grams need not be all distinct). For a deletion, the number of *q*-grams whose count is decremented is at most *q*, while those whose count is incremented is at most *q* or 1; for an insertion the other way around.—The claim follows by induction on the number of edit operations.

Connection to edit distance

Examples

With the earlier examples, we have

- 1. Exchange of two long substrings: $d_{edit}(s, t) = 6, d_{edit}(s, w) = 4$
- (compare to: $dist_{q-gram}(s, t) = 2$, $dist_{q-gram}(s, w) = 0$, with q = 2). 2. The *q*-gram distance is at most 2q times edit distance (*q*-gram
- lemma): $d_{edit}(s, v) = 2$ (compare to: $dist_{q-gram}(s, v) = 5 \le 8 = d_{edit}(s, v) \cdot 2q$, with q = 2)

Based on the q-gram lemma and the fact that the q-gram distance can be computed in linear time, we can use the q-gram distance as a filter for edit distance computations.

11 / 21

Computation of the *q*-gram distance

Basic ideas

- Use a sliding window of size q over s and t
- Use an array d_q of size σ^q
- First slide a window over *s*, increment respective entry for every *q*-gram seen
- Then slide over t, decrement respective entry for every q-gram seen
- Now $d_q[r] = N(s, u_r) N(t, u_r)$.
- Sum up the absolute values of the entries: $dist_{q-gram}(s,t) = \sum_i |d_q[i]|$

We will see: This algorithm runs in linear time.

But: how do we know where to find the entry for the current *q*-gram? This is called ranking (coming soon)

12/21

Computation of the *q*-gram distance

Algorithm for computing q-gram distance input: Strings s, t of length |s| = n and |t| = moutput: $dist_{q-gram}(s, t)$ 1. initialize $d_q[0...\sigma^q - 1]$ with 0s 2. for i = 1, ..., n - q + 1: $r \leftarrow rank(s_i...s_{i+q-1})$ $d_q[r] \leftarrow d_q[r] + 1$ 3. for i = 1, ..., m - q + 1: $r \leftarrow rank(t_i...t_{i+q-1})$ $d_q[r] \leftarrow d_q[r] - 1$ 4. $d \leftarrow 0$ 5. for $i = 0...\sigma^q - 1$: $d \leftarrow d + |d_q[i]|$. 6. return d

For an example, see next slide.

13/21

	r	u _r	d_q after the	d_q after the
			pass thru s	pass thru t
Example:	0	AA	0	-1
	1	AC	1	0
	2	AG	1	1
s = ACAGGGCA,	3	ΑT	0	0
t = GGGCAACA	4	CA	2	0
	5	CC	0	0
On the right, the array d_a	6	CG	0	0
	7	СТ	0	0
after line 2. of the algo	8	GA	0	0
(now <i>d_q</i> equals <i>P_q(s</i>))	9	GC	1	0
and after line 3.	10	GG	2	0
Finally, we have	11	GT	0	0
$d_2(s,t) = -1 + 1 = 2.$	12	ΤA	0	0
	13	TC	0	0
	14	TG	0	0
	15	ΤT	0	0

Goal	r	u _r	d _q after the pass thru <i>s</i>
	0	AA	0
Given <i>q</i> -gram <i>u</i> , we want to know which entry of the array <i>u</i> corresponds to.		AC	1
		AG	1
Ex.: Where is the q-gram CG? In position 6.	3	AT	0
	4	CA	2
Ranking functions		CC	0
 A ranking function is a bijection rank : Σ^q → [0σ^q - 1]. rank(u) gives us the position of u in the enumeration of Σ^q 	6	CG	0
	7	CT	0
	8	GA	0
	9	GC	1
	10	GG	2
 needs to be very efficiently computable 	11	GT	0
 the ranking function we use will give us 	12	ΤA	0
5	13	TC	0
constant time per <i>q</i> -gram of <i>s</i>	14	TG	0
	15	ΤT	0

Ranking function

- Basic idea: We will interpret the q-gram itself as a number: a number base σ. In our case: σ = 4.
- First, we assign numbers 0, \ldots , σ 1 (here: 0, 1, 2, 3) to the characters:

 $f: \mathtt{A} \mapsto \mathtt{O}, \mathtt{C} \mapsto \mathtt{1}, \mathtt{G} \mapsto \mathtt{2}, \mathtt{T} \mapsto \mathtt{3}$

- Second, we extend this to strings: e.g. CG becomes $12_4=1\cdot 4^1+2\cdot 4^0=6_{10}.~(i.e.~12 \text{ in base 4 equals 6 in base 10.})$
- In general, for $u = u_1 \dots u_q$, the rank(u) is given by:

$$rank(u) = f(u_1) \cdot \sigma^{q-1} + f(u_2) \cdot \sigma^{q-2} + \ldots + f(u_{q-1}) \cdot \sigma^1 + f(u_q) \cdot \sigma^0.$$

• E.g. $rank(CATT) = 1 \cdot 4^3 + 0 \cdot 4^2 + 3 \cdot 4 + 3 \cdot 1 = 64 + 0 + 12 + 3 = 79.$

16/21

Sliding window

Crucial trick

The rank of the *q*-gram starting in position i + 1 can be computed from the rank of the *q*-gram starting in position i in constant time.

Example

Let s = GACATTGACGAT, and let q = 4. Let's compare the rank of CATT and ATTG, two consecutive q-grams:

$$rank(CATT) = 1 \cdot 4^{3} + 0 \cdot 4^{2} + 3 \cdot 4^{1} + 3 \cdot 4^{0}$$

$$rank(ATTG) = 0 \cdot 4^{3} + 3 \cdot 4^{2} + 3 \cdot 4^{1} + 2 \cdot 4^{0}$$

So $1\cdot 4^3$ has to be subtracted, the rest multiplied by 4, and finally $2\cdot 4^0=2$ added.

17 / 21

Sliding window

In general:

$$rank(s_{i}...s_{i+q-1}) = f(s_i) \cdot \sigma^{q-1} + f(s_{i+1}) \cdot \sigma^{q-2} + ... + f(s_{i+q-1}) rank(s_{i+1}...s_{i+q}) = f(s_{i+1}) \cdot \sigma^{q-1} + ... + f(s_{i+q-1}) \cdot \sigma + f(s_{i+q})$$

Therefore, if $rank(s_i \dots s_{i+q-1}) = C$, then

$$rank(s_{i+1}\dots s_{i+q}) = (C - f(s_i) \cdot \sigma^{q-1}) \cdot \sigma + f(s_{i+q})$$

Ex. $rank(ATTG) = (rank(CATT) - 1 \cdot 4^3) \cdot 4 + 2 \cdot 4^0 = (79 - 64) \cdot 4 + 2 = 62.$ Double check: $rank(ATTG) = 0 \cdot 4^3 + 3 \cdot 4^2 + 3 \cdot 4 + 2 = 48 + 12 + 2 = 62.$

18/21

Analysis

- computing the rank of the first q-gram: O(q) time
- computing rank of the (i + 1)st q-gram, given the rank of the ith q-gram: constant time (O(1))

19 / 21

Analysis (cont.)

Computing the q-gram distance of two strings s, t of length n resp. m:

- initialize array d_q : $O(\sigma^q)$ time
- slide window of size q over s: there are n q + 1 windows, for each, we have to compute its rank r and then update the entry $d_q(r)$; rank of first window takes O(q) time, for all following windows O(1), while updating entry is always constant time: O(n) time
- slide window of size q over t: similarly, O(m) time
- compute sum of absolute values: $O(\sigma^q)$ time

Analysis (cont.)

Putting it together:

- Total time: $O(n + m + \sigma^q)$
- Total space: $O(\sigma^q)$, for the array d_q
- If we choose

$q \leq \log_{\sigma}(n), \log_{\sigma}(m),$

then $\sigma^q = O(n + m)$, so we have linear time and space O(n + m).