
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II. semester

The q-gram distance

The q-gram distance

• In many situations, edit distance is a good model for di↵erences /

similarity between strings.

• But sometimes, other distance functions serve the purpose better.

Motivations for using q-gram distance

1. If two parts of a sequence are exchanged (e.g. two paragraphs, two

long substrings, two genes), then one can argue that the resulting

strings still have high similarity; however, the edit distance will be big.

The q-gram distance can be more appropriate in this case.

2. The edit distance needs quadratic computation time, but this is often

too slow. The q-gram distance can be computed in linear time.

2 / 21

The q-gram distance

• In many situations, edit distance is a good model for di↵erences /

similarity between strings.

• But sometimes, other distance functions serve the purpose better.

Motivations for using q-gram distance

1. If two parts of a sequence are exchanged (e.g. two paragraphs, two

long substrings, two genes), then one can argue that the resulting

strings still have high similarity; however, the edit distance will be big.

The q-gram distance can be more appropriate in this case.

2. The edit distance needs quadratic computation time, but this is often

too slow. The q-gram distance can be computed in linear time.

2 / 21

What is a q-gram?

Let ⌃ be the alphabet, with |⌃| = �.

Def.

A q-gram is a string of length q.

Note

q-grams are also called k-mers, w -words, or k-tuples. Typically, q (or k ,

w , etc.) is small, much smaller than the strings we will want to compare.

We will fix q, and use the number of occurrences of q-grams to compute

distances between strings.

3 / 21

What is a q-gram?

Let ⌃ be the alphabet, with |⌃| = �.

Def.

A q-gram is a string of length q.

Note

q-grams are also called k-mers, w -words, or k-tuples. Typically, q (or k ,

w , etc.) is small, much smaller than the strings we will want to compare.

We will fix q, and use the number of occurrences of q-grams to compute

distances between strings.

3 / 21

Occurrence count

Let s be a string of length n � q, and u be a q-gram. The occurrence

count of u in s is

N(s, u) = |{i : si . . . si+q�1 = u}|,

the number of times q-gram u occurs in s.

Ex.

Let s = ACAGGGCA and q = 2.

Then

N(s, AC) = N(s, AG) = N(s, GC) = 1,N(s, CA) = N(s, GG) = 2, and for all

other q-grams u over ⌃, N(s, u) = 0.

4 / 21



Occurrence count

Let s be a string of length n � q, and u be a q-gram. The occurrence

count of u in s is

N(s, u) = |{i : si . . . si+q�1 = u}|,

the number of times q-gram u occurs in s.

Ex.

Let s = ACAGGGCA and q = 2. Then

N(s, AC) = N(s, AG) = N(s, GC) = 1,N(s, CA) = N(s, GG) = 2, and for all

other q-grams u over ⌃, N(s, u) = 0.

4 / 21

q-gram profile

Fix some enumeration (listing) of ⌃
q
, i.e. some order in which we want to

list all q-grams; e.g. the lexicographic order.

Def.

Let s be a string over ⌃, |s| � q. The q-gram profile of s, Pq(s) is an

array of size �q
, where the ith entry is

Pq(s)[i ] = N(s, ui ),

and ui is the ith q-gram in the enumeration.

5 / 21

Example:
Let ⌃ = {A, C, G, T} and q = 2.

Let

s = ACAGGGCA,

t = GGGCAACA,

v = AAGGACA.

Then the q-gram profiles of s, t, v are

shown on the right.

Notice that the sum of all entries of

Pq(s) = |s|�q+1 = total number of

q-gram occurrences in s = number of

distinct positions in s where a q-gram

starts.

u Pq(s) Pq(t) Pq(v)

AA 0 1 1

AC 1 1 1

AG 1 0 1

AT 0 0 0

CA 2 2 1

CC 0 0 0

CG 0 0 0

CT 0 0 0

GA 0 0 1

GC 1 1 0

GG 2 2 1

GT 0 0 0

TA 0 0 0

TC 0 0 0

TG 0 0 0

TT 0 0 0

6 / 21

q-gram distance

(Introduced by Ukkonen, 1992)

Def.: Given two strings s, t, the q-gram distance of s and t is

distq�gram(s, t) =
X

u2⌃q

|N(s, u)� N(t, u)|.

Equivalent def.: Given two strings s, t, the q-gram distance of s and t is

distq�gram(s, t) =
�qX

i=1

|Pq(s)[i ]� Pq(t)[i ]|,

which is the Manhattan distance
1
of the q-gram profiles of s and t.

1The Manhattan distance, or L1-distance, of two vectors x , y 2 Rn is defined asPn
i=1 |xi � yi |.

7 / 21

q-gram distance

In the previous example (q = 2, s = ACAGGGCA, t = GGGCAACA, and

v = AAGGACA), we have

dist2�gram(s, t) = 2, dist2�gram(s, v) = 5, and dist2�gram(t, v) = 5.

Note that it is possible to have distinct strings with q-gram distance 0, e.g.

for w = AGGGCACA, we have dist2�gram(s,w) = 0.

(Don’t just believe this, double check it!)

8 / 21

The q-gram distance is a pseudo-metric

Lemma

The q-gram distance is a pseudo-metric, i.e. it is non-negative, symmetric,

and obeys the triangle inequality (but it is possible to have x 6= y with

distq�gram(x , y) = 0).

Proof:

The three properties follow from the fact that the Manhattan metric is a

metric. The example above shows that distq�gram(x , y) = 0 does not

imply x = y .

Exercise:

Prove the lemma explicitly.

9 / 21



Connection to edit distance

q-gram Lemma

Let dedit(s, t) denote the (unit-cost) edit distance of s and t. Then

distq�gram(s, t)

2q
 dedit(s, t).

Proof

Every edit operation contributes to the q-gram distance at most 2q: Consider the

simplest case, a substitution in position i of s, where character si is substituted by

character x , and let s
0
be the resulting string. If q  i  |s|� q + 1, then there

are exactly q q-grams of s a↵ected by the substitution: si�q+1 . . . si , up to

si . . . si+q�1 (otherwise fewer); the counts of all these are decremented by 1, while

the counts of the new q-grams si�1+1 . . . x , si . . . xsi+q, etc. are incremented by 1.

Therefore, distq�gram(s, s 0)  2q (it could be less because these q-grams need not

be all distinct). For a deletion, the number of q-grams whose count is

decremented is at most q, while those whose count is incremented is at most

q � 1; for an insertion the other way around.—The claim follows by induction on

the number of edit operations.
10 / 21

Connection to edit distance

Examples

With the earlier examples, we have

1. Exchange of two long substrings: dedit(s, t) = 6, dedit(s,w) = 4

(compare to: distq�gram(s, t) = 2, distq�gram(s,w) = 0, with q = 2).

2. The q-gram distance is at most 2q times edit distance (q-gram

lemma): dedit(s, v) = 2

(compare to: distq�gram(s, v) = 5  8 = dedit(s, v) · 2q, with q = 2)

Based on the q-gram lemma and the fact that the q-gram distance can be

computed in linear time, we can use the q-gram distance as a filter for edit

distance computations.

11 / 21

Computation of the q-gram distance

Basic ideas

• Use a sliding window of size q over s and t

• Use an array dq of size �q

• First slide a window over s, increment respective entry for every

q-gram seen

• Then slide over t, decrement respective entry for every q-gram seen

• Now dq[r ] = N(s, ur )� N(t, ur ).

• Sum up the absolute values of the entries:

distq�gram(s, t) =
P

i |dq[i ]|

We will see: This algorithm runs in linear time.

But: how do we know where to find the entry for the current q-gram?

This is called ranking (coming soon)

12 / 21

Computation of the q-gram distance

Algorithm for computing q-gram distance

input: Strings s, t of length |s| = n and |t| = m

output: distq�gram(s, t)

1. initialize dq[0 . . .�q � 1] with 0s

2. for i = 1, . . . , n � q + 1 : r  rank(si . . . si+q�1)

dq[r ] dq[r ] + 1

3. for i = 1, . . . ,m � q + 1 : r  rank(ti . . . ti+q�1)

dq[r ] dq[r ]� 1

4. d  0

5. for i = 0 . . .�q � 1 : d  d + |dq[i ]|.
6. return d

For an example, see next slide.

13 / 21

Example:

s = ACAGGGCA,

t = GGGCAACA.

On the right, the array dq

after line 2. of the algo

(now dq equals Pq(s))

and after line 3.

Finally, we have

d2(s, t) = |� 1|+ 1 = 2.

r ur dq after the dq after the
pass thru s pass thru t

0 AA 0 �1
1 AC 1 0

2 AG 1 1

3 AT 0 0

4 CA 2 0

5 CC 0 0

6 CG 0 0

7 CT 0 0

8 GA 0 0

9 GC 1 0

10 GG 2 0

11 GT 0 0

12 TA 0 0

13 TC 0 0

14 TG 0 0

15 TT 0 0

14 / 21

Goal

Given q-gram u, we want to know which entry of

the array u corresponds to.

Ex.: Where is the q-gram CG? In position 6.

Ranking functions

• A ranking function is a bijection

rank : ⌃
q ! [0 . . .�q � 1].

• rank(u) gives us the position of u in the

enumeration of ⌃
q

• needs to be very e�ciently computable

• the ranking function we use will give us

constant time per q-gram of s

r ur dq after the
pass thru s

0 AA 0

1 AC 1

2 AG 1

3 AT 0

4 CA 2

5 CC 0

6 CG 0

7 CT 0

8 GA 0

9 GC 1

10 GG 2

11 GT 0

12 TA 0

13 TC 0

14 TG 0

15 TT 0

15 / 21



Ranking function

• Basic idea: We will interpret the q-gram itself as a number: a number

base �. In our case: � = 4.

• First, we assign numbers 0, . . . ,� � 1 (here: 0, 1, 2, 3) to the

characters:

f : A 7! 0, C 7! 1, G 7! 2, T 7! 3

• Second, we extend this to strings: e.g. CG becomes

124 = 1 · 41 + 2 · 40 = 610. (i.e. 12 in base 4 equals 6 in base 10.)

• In general, for u = u1 . . . uq, the rank(u) is given by:

rank(u) = f (u1) ·�q�1
+ f (u2) ·�q�2

+ . . .+ f (uq�1) ·�1
+ f (uq) ·�0.

• E.g. rank(CATT) = 1 · 43 +0 · 42 +3 · 4+ 3 · 1 = 64+ 0+12+3 = 79.

16 / 21

Sliding window

Crucial trick

The rank of the q-gram starting in position i + 1 can be computed from

the rank of the q-gram starting in position i in constant time.

Example

Let s = GACATTGACGAT, and let q = 4. Let’s compare the rank of CATT

and ATTG, two consecutive q-grams:

rank(CATT) = 1 · 43 + 0 · 42 + 3 · 41 + 3 · 40

rank(ATTG) = 0 · 43 + 3 · 42 + 3 · 41 + 2 · 40

So 1 · 43 has to be subtracted, the rest multiplied by 4, and finally

2 · 40 = 2 added.

17 / 21

Sliding window

In general:

rank(si . . . si+q�1) = f (si ) · �q�1
+ f (si+1) · �q�2

+ . . .+ f (si+q�1)

rank(si+1 . . . si+q) = f (si+1) · �q�1
+ . . .+ f (si+q�1) · � + f (si+q)

Therefore, if rank(si . . . si+q�1) = C , then

rank(si+1 . . . si+q) = (C � f (si ) · �q�1
) · � + f (si+q)

Ex. rank(ATTG) = (rank(CATT)� 1 · 43) · 4+2 · 40 = (79� 64) · 4+2 = 62.
Double check: rank(ATTG) = 0 · 43 + 3 · 42 + 3 · 4 + 2 = 48 + 12 + 2 = 62.

18 / 21

Analysis

• computing the rank of the first q-gram: O(q) time

• computing rank of the (i + 1)st q-gram, given the rank of the ith

q-gram: constant time (O(1))

19 / 21

Analysis (cont.)

Computing the q-gram distance of two strings s, t of length n resp. m:

• initialize array dq: O(�q
) time

• slide window of size q over s: there are n � q + 1 windows, for each,

we have to compute its rank r and then update the entry dq(r); rank

of first window takes O(q) time, for all following windows O(1), while

updating entry is always constant time: O(n) time

• slide window of size q over t: similarly, O(m) time

• compute sum of absolute values: O(�q
) time

20 / 21

Analysis (cont.)

Putting it together:

• Total time: O(n +m + �q
)

• Total space: O(�q
), for the array dq

• If we choose

q  log�(n), log�(m),

then �q
= O(n +m), so we have linear time and space O(n +m).

21 / 21


