Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2018/19, Il. semester

The g-gram distance

The g-gram distance

® In many situations, edit distance is a good model for differences /
similarity between strings.

® But sometimes, other distance functions serve the purpose better.

Motivations for using g-gram distance

1. If two parts of a sequence are exchanged (e.g. two paragraphs, two
long substrings, two genes), then one can argue that the resulting
strings still have high similarity; however, the edit distance will be big.
The g-gram distance can be more appropriate in this case.

2. The edit distance needs quadratic computation time, but this is often
too slow. The g-gram distance can be computed in linear time.

What is a g-gram?

Let X be the alphabet, with || = 0.

Def.
A g-gram is a string of length q.

Note
g-grams are also called k-mers, w-words, or k-tuples. Typically, g (or k,
w, etc.) is small, much smaller than the strings we will want to compare.

We will fix g, and use the number of occurrences of g-grams to compute
distances between strings.

The g-gram distance

® In many situations, edit distance is a good model for differences /
similarity between strings.
® But sometimes, other distance functions serve the purpose better.

What is a g-gram?

Let X be the alphabet, with || = 0.

Def.
A g-gram is a string of length g.

Occurrence count

Let s be a string of length n > g, and u be a g-gram. The occurrence
count of uin s is
N(S, u) = HI ©Si...Sitg-1 = u}l7

the number of times g-gram u occurs in s.

Ex.
Let s = ACAGGGCA and g = 2.

Occurrence count

Let s be a string of length n > g, and u be a g-gram. The occurrence
count of uin s is

N(S. U) = |{I N S,"..S,urq,l = Ll}

the number of times g-gram u occurs in s.

Ex.

Let s = ACAGGGCA and g = 2. Then

N(s,AC) = N(s,AG) = N(s,GC) = 1, N(s,CA) = N(s,GG) = 2, and for all
other g-grams u over ¥, N(s, u) = 0.

4/21
Fxample: u_ Py(s) Polt) Po(v)
Let ¥ = {A,C,G,T} and g = 2. vy 0 1 1
AC 1 1 1
Let AG 1 0 1
s = ACAGGGCA, AT 0 0 0
t = GGGCAACA, o S g (1)
v = AAGGACA.] ce 0 0 0
Then the g-gram profiles of s, t, v are cT 0 0 0
shown on the right. GA 0 0 1
GC 1 1 0
GG 2 2 1
Notice that the sum of all entries of GT 0 0 0
P4(s) = |s| — g+1 = total number of TA 0 0 0
g-gram occurrences in s = number of TC 0 0 0
distinct positions in s where a g-gram TG 0 0 0
p a-g T 0 0 0
starts.
6/21

g-gram distance

In the previous example (g = 2, s = ACAGGGCA, t = GGGCAACA, and
v = AAGGACA), we have

disty_gram(s, t) = 2, disty_gram(s, v) = 5, and distz_gram(t, v) = 5.

Note that it is possible to have distinct strings with g-gram distance 0, e.g.

for w = AGGGCACA, we have disty_gram(s, w) = 0.

(Don’t just believe this, double check it!)

g-gram profile

Fix some enumeration (listing) of ¥9, i.e. some order in which we want to
list all g-grams; e.g. the lexicographic order.

Def.
Let s be a string over X, |s| > q. The g-gram profile of s, Pg(s) is an
array of size 09, where the ith entry is

Pq(s)[i] = N(s, u7),

and u; is the ith g-gram in the enumeration.

g-gram distance

(Introduced by Ukkonen, 1992)

Def.: Given two strings s, t, the g-gram distance of s and t is

distg_gram(s, t) = > |N(s,u) — N(t, u)|.
uexa

Equivalent def.: Given two strings s, t, the g-gram distance of s and t is

distq—gram(s.t) =) _ [Pa(s)[i] = Pa(t)1i],
i=1

which is the Manhattan distance! of the g-gram profiles of s and t.

1The Manhattan distance, or L;-distance, of two vectors x,y € R" is defined as

i Ixi = yil-

The g-gram distance is a pseudo-metric

Lemma

The g-gram distance is a pseudo-metric, i.e. it is non-negative, symmetric,
and obeys the triangle inequality (but it is possible to have x # y with
distg—gram(x,y) = 0).

Proof:

The three properties follow from the fact that the Manhattan metric is a
metric. The example above shows that disty—gram(x, y) = 0 does not
imply x = y.

Exercise:

Prove the lemma explicitly.

Connection to edit distance

g-gram Lemma
Let degit(s, t) denote the (unit-cost) edit distance of s and t. Then

Btogom(®:8) < g (s, o)
2q

Proof

Every edit operation contributes to the g-gram distance at most 2q: Consider the
simplest case, a substitution in position i of s, where character s; is substituted by
character x, and let s’ be the resulting string. If ¢ </ <|s| — g+ 1, then there
are exactly g g-grams of s affected by the substitution: s;_g41...s;, up to
Si...Siyq—1 (otherwise fewer); the counts of all these are decremented by 1, while
the counts of the new g-grams s;_141...x, Si...XSj;q, etc. are incremented by 1.
Therefore, distq_gram(s,s’) < 2q (it could be less because these g-grams need not
be all distinct). For a deletion, the number of g-grams whose count is
decremented is at most g, while those whose count is incremented is at most

q — 1; for an insertion the other way around.—The claim follows by induction on

the number of edit operations. 0/

Computation of the g-gram distance
Basic ideas

® Use a sliding window of size q over s and t

® Use an array dy of size o9

First slide a window over s, increment respective entry for every
g-gram seen

® Then slide over t, decrement respective entry for every g-gram seen
Now dg[r] = N(s, u;) — N(t, uy).
® Sum up the absolute values of the entries:

distq—gram(s, t) = 3_; [dq[i]|

We will see: This algorithm runs in linear time.

But: how do we know where to find the entry for the current g-gram?
This is called ranking (coming soon)

12/21

r uy dq afterthe dg after the
pass thru s pass thru t

0 AA 0 -1

Example: 1 AC 1 0
2 AG 1 1

s = ACAGGGCA, 3 AT 0 0
t = GGGCAACA. 4 Cch 2 0
5 CC 0 0

. 6 CG 0 0

On tht.a right, the array d; 7 or 0 0
after line 2. of the algo 8 G 0 0
(now dg equals Py(s)) 9 6 1 0
and after line 3. 10 GG 2 0
Finally, we have 11 GT 0 0
das, t) =] -1 +1=2. 12 TA 0 0
13 TC 0 0

14 TG 0 0

15 TT 0 0

14/21

Connection to edit distance

Examples
With the earlier examples, we have
1. Exchange of two long substrings: degit(s, t) = 6, dedit(s, w) = 4
(compare to: distq_gram(s, t) = 2, distq_gram(s, w) = 0, with g = 2).
2. The g-gram distance is at most 2q times edit distance (g-gram
lemma): degit(s,v) =2
(compare to: distg—gram(s,v) =5 < 8 = dedit(s, v) - 2q, with g = 2)

Based on the g-gram lemma and the fact that the g-gram distance can be
computed in linear time, we can use the g-gram distance as a filter for edit
distance computations.

11/21

Computation of the g-gram distance

Algorithm for computing g-gram distance
input: Strings s, t of length |s| = nand |t| = m
output: disty_gram(s, t)
1. initialize dg[0...09 — 1] with Os
2. fori=1,....,n—q+1:r<« rank(s;...Si1q-1)
dg[r] < dg[r]+1
3. fori=1,...,m—q+1:r<rank(tj... titq-1)
dg[r] < dg[r] —1
4.d+0
5. fori=0...09—1:d« d+|dgli]].

6. return d

For an example, see next slide.

13/21

r o u, dg after the

Goal — pass (t)hru s
Given g-gram u, we want to know which entry of 1 AC 1
the array u corresponds to. 2 AG 1
Ex.: Where is the g-gram CG? In position 6. 3 AT 0
4 cA 2
Ranking functions 5 cC 0
e A ranking function is a bijection 6 CG 0
rank : £9 - [0...09 — 1]. 7 cT 0
. L. . 8 GA 0
® rank(u) gives us the position of u in the 9 Gc 1
enumeration of X9 10 GG 2
® needs to be very efficiently computable 11 GT 0
® the ranking function we use will give us g x 8
constant time per g-gram of s 14 TG 0
15 TT 0

15/21

Ranking function

Basic idea: We will interpret the g-gram itself as a number: a number
base o. In our case: o = 4.
® First, we assign numbers 0,...,0 — 1 (here: 0,1,2,3) to the
characters:

f:A—0,C—~1,G6—2,T—3

® Second, we extend this to strings: e.g. CG becomes
124 =1-41 +2.49 =645 (i.e. 12 in base 4 equals 6 in base 10.)

In general, for u = uy ... ug, the rank(u) is given by:

rank(u) = f(u1) - 09+ F(ua) - 0T 24+ 4 Fug_1) - o' + Fug) - 0°.

® E.g. rank(CATT) =1-43+0-42+3.443-1=64+0+12+3=79.

16/21
Sliding window
In general:
rank(si...Sirq-1) = f(si)- o7t 4 f(si41) oI+ f(Sitq—1)
rank(siy1...Sivq) = f(siv1) - 0T+ + F(Sivg1) - 0 + F(Sitq)

Therefore, if rank(s; . .. siyq—1) = C, then

rank(siy1 .. Sitq) = (C — f(s;) - 0971) - 0 + F(Si1q)

Ex. rank(ATTG) = (rank(CATT) —1-4%).4+2.40 = (79— 64)-4+2 = 62.
Double check: rank(ATTG) =0-43+3.4243.44+2=48+124+2=62.

18/21

Analysis (cont.)

Computing the g-gram distance of two strings s, t of length n resp. m:
e initialize array dgq: O(09) time
® slide window of size g over s: there are n — g + 1 windows, for each,
we have to compute its rank r and then update the entry dg(r); rank

of first window takes O(q) time, for all following windows O(1), while
updating entry is always constant time: O(n) time

slide window of size g over t: similarly, O(m) time
® compute sum of absolute values: O(c9) time

20/21

Sliding window

Crucial trick
The rank of the g-gram starting in position / + 1 can be computed from
the rank of the g-gram starting in position / in constant time.

Example
Let s = GACATTGACGAT, and let g = 4. Let's compare the rank of CATT

and ATTG, two consecutive g-grams:
rank(CATT) = 1-4°40-424+3-41+3.4°
rank(ATTG) = 0-4343-4243.4142.4°

So 1-43 has to be subtracted, the rest multiplied by 4, and finally
249 =2 added.

17/21

Analysis

® computing the rank of the first g-gram: O(q) time

® computing rank of the (i + 1)st g-gram, given the rank of the ith
g-gram: constant time (O(1))

Analysis (cont.)

Putting it together:

® Total time: O(n+ m+09)
e Total space: O(c9), for the array dj
® |f we choose

q < log,(n),log,(m),

then 09 = O(n + m), so we have linear time and space O(n+ m).

19/21

21/21

