Bioinformatics Algorithms (Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2018/19, II. semester

Phylogenetics I^1

¹These slides are partially based on the Lecture Notes from Bielefeld University "Algorithms for Phylogenetic Reconstruction" (2016/17), by J. Stoye, R. Wittler, et al.

What is a phylogenetic tree?

Phylogenetic trees display the evolutionary relationships among a set of objects (species). Contemporary species are represented by the leaves. Internal nodes of the tree represent speciation events (\approx common ancestors, usually extinct).

Different types of phylogenetic trees

- rooted vs. unrooted (root on top/bottom vs. root in the middle)
- binary (fully resolved) vs. multifurcating (polytomies)
- are edge lengths significant?
- is there a time scale on the side?

Phylogenetic reconstruction

Goal

Given n objects and data on these objects, find a phylogenetic tree with these objects at the leaves which best reflects the input data.

Phylogenetic reconstruction

Note:

We need to define more precisely

- what kind of input data we have,
- what kind of tree we want (e.g. rooted or unrooted), and
- what we mean by "reflect the data."

Phylogenetic reconstruction

There are two main issues:

- 1. How well does a tree reflect my data?
- 2. How do we find such a tree?

Say we have answered these questions, then: Could we just list all possible trees and then choose the/a best one?

# taxa	# unrooted trees	# rooted trees	
п	(2n - 5)!!	(2n - 3)!!	
1	1	1	
2	1	1	
3	1	3	
4	3	15	

All phylogenetic trees (rooted and unrooted) on 4 taxa.

Theorem

There are $U_n = (2n-5)!! = \prod_{i=3}^{n} (2i-5)$ unrooted binary phylogenetic trees on *n* objects, and $R_n = (2n-3)!! = \prod_{i=2}^{n} (2i-3)$ rooted binary phylogenetic trees on *n* objects.

Proof

By induction on n, using that (1) we can get every unrooted tree on n + 1 objects in a unique way by adding the (n + 1)st leaf to an unrooted tree on the first n objects; (2) an unrooted binary tree with n leaves has 2n - 3 edges, (3) every unrooted tree on n objects can be rooted in (number of edges) ways, yielding a rooted tree on n objects.

#taxa	#unrooted trees	#rooted trees
п	(2n-5)!!	(2n - 3)!!
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10, 395
8	10,395	135, 135
9	135, 135	2,027,025
10	2,027,025	34, 459, 425

So there are super-exponentially many trees: We cannot check all of them!

Types of input data

We can have two kinds of input data:

- distance data: $n \times n$ matrix of pairwise distances between the taxa, or
- character data: $n \times m$ matrix giving the states of m characters for the n taxa

Distance data

Distance data is given as an $(n \times n)$ matrix M with the pairwise distances between the taxa.

Ex.			
	а	b	С
а	0	5	2
b	5	0	4
С	2	4	0

E.g., $M_{a,b} = 5$ means that the distance between *a* and *b* is 5. Often, this is the edit distance (between two genomic sequences, or between homologous proteins, ...).

We want to find a tree with a, b, c at the leaves s.t. the distance in the tree (the path metric) between a and b is 5, between a and c is 2, etc.

Distance data

Path metric of a tree

Given a tree T, the path-metric of T is d_T , defined as: $d_T(u, v) = \text{sum of edge weights on the (unique) path between <math>u$ and v.

Example

Note

 $d_{\mathcal{T}}(u, v)$ is also defined for inner nodes u, v, but we only need it for leaves.

For our earlier example, we can find such a tree:

For our earlier example, we can find such a tree:

Question

Is it always possible to find a tree s.t. its path-metric equals the input distances? I.e. does such a tree exist for any input matrix M?

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

- $M(x,y) \ge 0$ and (M(x,y) = 0 iff x = y) (positive definite)
- M(x,y) = M(y,x) (symmetry)
- $M(x,y) + M(y,z) \ge M(x,z)$ (triangle inequality)

For example, the edit distance is a metric (on strings), the Hamming distance (on strings of the same length), the Euclidean distance (on \mathbb{R}^2).

Conditions on distance matrix

Question:

When does a tree exist whose path metric agrees with a distance matrix M?

Answer:

- if we want a rooted tree: *M* needs to be ultrametric
- if we want an unrooted tree: *M* needs to be additive

Rooted trees and the molecular clock

In a rooted phylogenetic tree, the molecular clock assumption holds: that the speed of evolution is the same along all branches, i.e. the path distance from each leaf to the root is the same. Such a tree is also called an ultrametric tree.

Ultrametrics and the three-point condition

Three point condition

Let *d* be a metric on a set of objects *O*, then *d* is an ultrametric if $\forall x, y, z \in O$:

$$d(x,y) \leq \max\{d(x,z), d(z,y)\}$$

Figure: Three point condition. It implies that the path metric of a rooted tree is an ultrametric.

In other words, among the three distances, there is no unique maximum.

Checking the ultrametric condition, we see that:

- for *a*, *b*, *c* we get 2, 10, 10 okay
- for *a*, *b*, *d* we get 6, 10, 10 okay
- for *a*, *c*, *d* we get 6, 10, 10 okay
- for *b*, *c*, *d* we get 2, 6, 6 okay

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex.	1	(fr	om	before)
	а	b	С	
а	0	5	2	
b	5	0	4	
с	2	4	0	

For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex.	1	(fr	om	before)
	а	b	С	
а	0	5	2	
b	5	0	4	
с	2	4	0	

For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.

Indeed, the only tree we found was not rooted:

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if it is a metric and the 3-point-condition holds). This tree is unique².

²i.e. there is only one such tree

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if it is a metric and the 3-point-condition holds). This tree is unique².

Algorithm

The algorithm UPGMA (unweighted pair group mtheod using arithmetic averages, Michener & Sokal 1957), a hierarchical clustering algorithm, constructs this tree, given an input matrix which is ultrametric. Its running time is $O(n^2)$.

²i.e. there is only one such tree

Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees?

Four point condition.

Let *d* be a metric on a set of objects *O*, then *d* is an additive metric if $\forall x, y, u, v \in O$:

$$d(x,y)+d(u,v)\leq \max\{d(x,u)+d(y,v),d(x,v)+d(y,u)\}$$

In other words, among the three sums of two distances, there is no unique maximum.

Additive metrics and the four-point condition

Figure: The four point condition. It implies that the path metric of a tree is an additive metric.

For ex., choose these 4 points: a, b, c, e. Then we get the three sums: d(a, b) + d(c, e) = 5 + 8 = 13, d(a, c) + d(b, e) = 12 + 9 = 21, and d(a, e) + d(b, c) = 10 + 11 = 21. Among 13, 21, 21, there is no unique maximum—okay. (Careful, this has to hold for all quadruples; how many are there?)

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if it is a metric and the 4-point-condition holds). This tree is unique.

Algorithm

The algorithm NJ (Neighbor Joining) constructs this tree, given an additive matrix M (Saitu & Nei, 1987). Its running time is $O(n^3)$.

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if it is a metric and the 4-point-condition holds). This tree is unique.

Algorithm

The algorithm NJ (Neighbor Joining) constructs this tree, given an additive matrix M (Saitu & Nei, 1987). Its running time is $O(n^3)$.

In fact, it is even possible to compute a "good" tree if the matrix is not additive but "almost" (all this needs to be defined precisely, of course).

• When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with *M* exists if and only if the distance matrix *M* defines an ultrametric.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with *M* exists if and only if the distance matrix *M* defines an ultrametric.
- This tree can then be computed efficiently (i.e. in polynomial time), with UPGMA.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with *M* exists if and only if the distance matrix *M* defines an ultrametric.
- This tree can then be computed efficiently (i.e. in polynomial time), with UPGMA.
- An unrooted tree agreeing with *M* exists if and only if the distance matrix *M* defines an additive metric.

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- A rooted tree agreeing with *M* exists if and only if the distance matrix *M* defines an ultrametric.
- This tree can then be computed efficiently (i.e. in polynomial time), with UPGMA.
- An unrooted tree agreeing with *M* exists if and only if the distance matrix *M* defines an additive metric.
- It can be computed efficiently (i.e. in polynomial time), with Neighbor Joining.