
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II. semester

Phylogenetics I1

1These slides are partially based on the Lecture Notes from Bielefeld University
”Algorithms for Phylogenetic Reconstruction” (2016/17), by J. Stoye, R. Wittler, et al.

What is a phylogenetic tree?

wolf cat lion horse rhino
species
(taxa)

speciation
events

Phylogenetic trees display the evolutionary relationships among a set of
objects (species). Contemporary species are represented by the leaves.
Internal nodes of the tree represent speciation events (≈ common
ancestors, usually extinct).

2 / 27

Different types of phylogenetic trees

• rooted vs. unrooted (root on top/bottom vs. root in the middle)

• binary (fully resolved) vs. multifurcating (polytomies)

• are edge lengths significant?

• is there a time scale on the side?

3 / 27

Phylogenetic reconstruction

Goal
Given n objects and data on these objects, find a phylogenetic tree with
these objects at the leaves which best reflects the input data.

4 / 27

Phylogenetic reconstruction

Note:
We need to define more precisely

• what kind of input data we have,

• what kind of tree we want (e.g. rooted or unrooted), and

• what we mean by “reflect the data.”

5 / 27

Phylogenetic reconstruction

There are two main issues:

1. How well does a tree reflect my data?

2. How do we find such a tree?

6 / 27

Number of phylogenetic trees

Say we have answered these questions, then: Could we just list all possible
trees and then choose the/a best one?

taxa # unrooted trees # rooted trees
n (2n − 5)!! (2n − 3)!!

1 1 1
2 1 1
3 1 3
4 3 15

7 / 27

Number of phylogenetic trees

All phylogenetic trees (rooted and unrooted) on 4 taxa.
8 / 27

Number of phylogenetic trees

Theorem
There are Un = (2n − 5)!! =

∏n
i=3(2i − 5) unrooted binary phylogenetic

trees on n objects, and Rn = (2n − 3)!! =
∏n

i=2(2i − 3) rooted binary
phylogenetic trees on n objects.

Proof
By induction on n, using that (1) we can get every unrooted tree on n + 1
objects in a unique way by adding the (n + 1)st leaf to an unrooted tree
on the first n objects; (2) an unrooted binary tree with n leaves has 2n− 3
edges, (3) every unrooted tree on n objects can be rooted in (number of
edges) ways, yielding a rooted tree on n objects.

9 / 27

Number of phylogenetic trees

#taxa #unrooted trees #rooted trees
n (2n − 5)!! (2n − 3)!!

1 1 1
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10, 395
8 10, 395 135, 135
9 135, 135 2, 027, 025

10 2, 027, 025 34, 459, 425

10 / 27

Number of phylogenetic trees

So there are super-exponentially many trees:
We cannot check all of them!

11 / 27

Types of input data

We can have two kinds of input data:

• distance data: n× n matrix of pairwise distances between the taxa, or

• character data: n×m matrix giving the states of m characters for the
n taxa

12 / 27

Distance data

Distance data is given as an (n × n) matrix M with the pairwise distances
between the taxa.

Ex.
a b c

a 0 5 2
b 5 0 4
c 2 4 0

E.g., Ma,b = 5 means that
the distance between a and b
is 5. Often, this is the edit
distance (between two genomic
sequences, or between homolo-
gous proteins, . . .).

We want to find a tree with a, b, c at the leaves s.t. the distance in the
tree (the path metric) between a and b is 5, between a and c is 2, etc.

13 / 27

Distance data

Path metric of a tree
Given a tree T , the path-metric of T is dT , defined as: dT (u, v) = sum of
edge weights on the (unique) path between u and v .

Example

b

c

a
3

2 5

4 1
2

3
d

e

dT (a, b) = 5,
dT (a, d) = 11,
dT (c , d) = 9, . . .

Note
dT (u, v) is also defined for inner nodes u, v , but we only need it for leaves.

14 / 27

Example

For our earlier example, we can find such a tree:

Ex. 1 (from before)
a b c

a 0 5 2
b 5 0 4
c 2 4 0

b

c

a
1,5

0,5

3,5

Question
Is it always possible to find a tree s.t. its path-metric equals the input
distances? I.e. does such a tree exist for any input matrix M?

15 / 27

Example

For our earlier example, we can find such a tree:

Ex. 1 (from before)
a b c

a 0 5 2
b 5 0 4
c 2 4 0

b

c

a
1,5

0,5

3,5

Question
Is it always possible to find a tree s.t. its path-metric equals the input
distances? I.e. does such a tree exist for any input matrix M?

15 / 27

Distance data

First of all, the input matrix M has to define a metric (= a distance
function), i.e. for all x , y , z ,

• M(x , y) ≥ 0 and (M(x , y) = 0 iff x = y) (positive definite)

• M(x , y) = M(y , x) (symmetry)

• M(x , y) + M(y , z) ≥ M(x , z) (triangle inequality)

For example, the edit distance is a metric (on strings), the Hamming
distance (on strings of the same length), the Euclidean distance (on R2).

16 / 27

Distance data

First of all, the input matrix M has to define a metric (= a distance
function), i.e. for all x , y , z ,

• M(x , y) ≥ 0 and (M(x , y) = 0 iff x = y) (positive definite)

• M(x , y) = M(y , x) (symmetry)

• M(x , y) + M(y , z) ≥ M(x , z) (triangle inequality)

For example, the edit distance is a metric (on strings), the Hamming
distance (on strings of the same length), the Euclidean distance (on R2).

16 / 27

Conditions on distance matrix

Question:
When does a tree exist whose path metric agrees with a distance matrix
M?

Answer:

• if we want a rooted tree: M needs to be ultrametric

• if we want an unrooted tree: M needs to be additive

17 / 27

Rooted trees and the molecular clock

wolf cat lion horse rhino
species
(taxa)

speciation
events

In a rooted phylogenetic tree, the molecular clock assumption holds: that
the speed of evolution is the same along all branches, i.e. the path
distance from each leaf to the root is the same. Such a tree is also called
an ultrametric tree.

18 / 27

Ultrametrics and the three-point condition

Three point condition

Let d be a metric on a set of objects O, then d is an ultrametric if
∀ x , y , z ∈ O:

d(x , y) ≤ max{d(x , z), d(z , y)}

dxy d d=xz yz

x

y

z

x

y

z

Figure: Three point condition. It implies that the path metric of a rooted tree is
an ultrametric.

In other words, among the three distances, there is no unique maximum.
19 / 27

Example

Ex. 2
a b c d

a 0 10 10 10
b 10 0 2 6
c 10 2 0 6
d 10 6 6 0

a b c d

5

3

1

Checking the ultrametric condition, we see that:

• for a, b, c we get 2, 10, 10 — okay

• for a, b, d we get 6, 10, 10 — okay

• for a, c , d we get 6, 10, 10 — okay

• for b, c , d we get 2, 6, 6 — okay

20 / 27

Example

Ex. 2
a b c d

a 0 10 10 10
b 10 0 2 6
c 10 2 0 6
d 10 6 6 0

a b c d

5

3

1

Checking the ultrametric condition, we see that:

• for a, b, c we get 2, 10, 10 — okay

• for a, b, d we get 6, 10, 10 — okay

• for a, c , d we get 6, 10, 10 — okay

• for b, c , d we get 2, 6, 6 — okay

20 / 27

Example

Compare this to our earlier example. There the matrix M does not define
an ultrametric!

Ex. 1 (from before)
a b c

a 0 5 2
b 5 0 4
c 2 4 0

For the triple a, b, c (the only
triple), we get: 2, 4, 5, and
there is a unique maximum: 5.

Indeed, the only tree we found
was not rooted:

b

c

a
1,5

0,5

3,5

21 / 27

Example

Compare this to our earlier example. There the matrix M does not define
an ultrametric!

Ex. 1 (from before)
a b c

a 0 5 2
b 5 0 4
c 2 4 0

For the triple a, b, c (the only
triple), we get: 2, 4, 5, and
there is a unique maximum: 5.

Indeed, the only tree we found
was not rooted:

b

c

a
1,5

0,5

3,5

21 / 27

Ultrametrics and the three-point condition

Theorem
Given an (n × n) distance matrix M. There is a rooted tree whose path
metric agrees with M if and only if M defines an ultrametric (i.e. if and
only if it is a metric and the 3-point-condition holds). This tree is unique2.

Algorithm

The algorithm UPGMA (unweighted pair group mtheod using arithmetic
averages, Michener & Sokal 1957), a hierarchical clustering algorithm,
constructs this tree, given an input matrix which is ultrametric. Its running
time is O(n2).

2i.e. there is only one such tree
22 / 27

Ultrametrics and the three-point condition

Theorem
Given an (n × n) distance matrix M. There is a rooted tree whose path
metric agrees with M if and only if M defines an ultrametric (i.e. if and
only if it is a metric and the 3-point-condition holds). This tree is unique2.

Algorithm

The algorithm UPGMA (unweighted pair group mtheod using arithmetic
averages, Michener & Sokal 1957), a hierarchical clustering algorithm,
constructs this tree, given an input matrix which is ultrametric. Its running
time is O(n2).

2i.e. there is only one such tree
22 / 27

Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees?

Four point condition.

Let d be a metric on a set of objects O, then d is an additive metric if
∀ x , y , u, v ∈ O:

d(x , y) + d(u, v) ≤ max{d(x , u) + d(y , v), d(x , v) + d(y , u)}

In other words, among the three sums of two distances, there is no unique
maximum.

23 / 27

Additive metrics and the four-point condition

dxy

yu

+ < =+ +

x

y

u

v

d

xu

dyv d

d

uv

d xv

Figure: The four point condition. It implies that the path metric of a tree is an
additive metric.

24 / 27

Example

b

c

a
3

2 5

4 1
2

3
d

e

For ex., choose these 4 points: a, b, c , e. Then we get the three sums:
d(a, b) + d(c , e) = 5 + 8 = 13, d(a, c) + d(b, e) = 12 + 9 = 21, and
d(a, e) + d(b, c) = 10 + 11 = 21. Among 13, 21, 21, there is no unique
maximum—okay. (Careful, this has to hold for all quadruples; how many
are there?)

25 / 27

Additive metrics and the four-point condition

Theorem
Given an (n× n) distance matrix M. There is an unrooted tree whose path
metric agrees with M if and only if M defines an additive metric (i.e. if and
only if it is a metric and the 4-point-condition holds). This tree is unique.

Algorithm

The algorithm NJ (Neighbor Joining) constructs this tree, given an
additive matrix M (Saitu & Nei, 1987). Its running time is O(n3).

In fact, it is even possible to compute a “good” tree if the matrix is not
additive but “almost” (all this needs to be defined precisely, of course).

26 / 27

Additive metrics and the four-point condition

Theorem
Given an (n× n) distance matrix M. There is an unrooted tree whose path
metric agrees with M if and only if M defines an additive metric (i.e. if and
only if it is a metric and the 4-point-condition holds). This tree is unique.

Algorithm

The algorithm NJ (Neighbor Joining) constructs this tree, given an
additive matrix M (Saitu & Nei, 1987). Its running time is O(n3).

In fact, it is even possible to compute a “good” tree if the matrix is not
additive but “almost” (all this needs to be defined precisely, of course).

26 / 27

Summary for distance data

• When the input is a distance matrix, then we are looking for a tree
whose path metric agrees with M.

• A rooted tree agreeing with M exists if and only if the distance matrix
M defines an ultrametric.

• This tree can then be computed efficiently (i.e. in polynomial time),
with UPGMA.

• An unrooted tree agreeing with M exists if and only if the distance
matrix M defines an additive metric.

• It can be computed efficiently (i.e. in polynomial time), with Neighbor
Joining.

27 / 27

Summary for distance data

• When the input is a distance matrix, then we are looking for a tree
whose path metric agrees with M.

• A rooted tree agreeing with M exists if and only if the distance matrix
M defines an ultrametric.

• This tree can then be computed efficiently (i.e. in polynomial time),
with UPGMA.

• An unrooted tree agreeing with M exists if and only if the distance
matrix M defines an additive metric.

• It can be computed efficiently (i.e. in polynomial time), with Neighbor
Joining.

27 / 27

Summary for distance data

• When the input is a distance matrix, then we are looking for a tree
whose path metric agrees with M.

• A rooted tree agreeing with M exists if and only if the distance matrix
M defines an ultrametric.

• This tree can then be computed efficiently (i.e. in polynomial time),
with UPGMA.

• An unrooted tree agreeing with M exists if and only if the distance
matrix M defines an additive metric.

• It can be computed efficiently (i.e. in polynomial time), with Neighbor
Joining.

27 / 27

Summary for distance data

• When the input is a distance matrix, then we are looking for a tree
whose path metric agrees with M.

• A rooted tree agreeing with M exists if and only if the distance matrix
M defines an ultrametric.

• This tree can then be computed efficiently (i.e. in polynomial time),
with UPGMA.

• An unrooted tree agreeing with M exists if and only if the distance
matrix M defines an additive metric.

• It can be computed efficiently (i.e. in polynomial time), with Neighbor
Joining.

27 / 27

Summary for distance data

• When the input is a distance matrix, then we are looking for a tree
whose path metric agrees with M.

• A rooted tree agreeing with M exists if and only if the distance matrix
M defines an ultrametric.

• This tree can then be computed efficiently (i.e. in polynomial time),
with UPGMA.

• An unrooted tree agreeing with M exists if and only if the distance
matrix M defines an additive metric.

• It can be computed efficiently (i.e. in polynomial time), with Neighbor
Joining.

27 / 27

