Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2018/19, Il. semester

Pairwise Alignment 3

Given two sequences s, t of length n:

® DP algorithm for global alignment: O(n?) time and space

e if we only want the score of an optimal alignment sim(s, t) (problem
variant 1), then we can do this in O(n?) time and O(n) space
(space-saving variant)

But that algo does not give us the optimal alignment itself
(problem variant 2)

® Now: algorithm for computing an optimal alignment itself
in time O(n?) but space O(n)

There are several algorithms achieving this, e.g. Hirschberg (1975) a.k.a.
Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the
book by Durbin, Eddy, Krogh, Mitchison: Biological Sequence Analysis, 1998 (ch.
2.6).

GAAGA)

Consider the first optimal alignment (5%

Idea: Divide-and-conquer
We divide the two sequences s, t in two parts, left and right, align left with

left, right with right, and then concatenate the two alignments:

GAAGA (GAAGA
CACA —CACA:-

GAA/ \GA

VRN 7\ /
o 2og 2y O O

top-down: split sequences into two bottom-up: concatenate alignments

Why does this work?

Optimal pairwise alignment
in linear space

s = GAAGA, t = CACA match: 2, mismatch: -1, gap: -1

D(i,j) c A c A
0 1 2 3 4
0 0 -1 -2 -3 —4 The optimal
alignments are:
G 1 -1 -1 -2 -3 —4
GAAGA
1 (—CAcA)
A 2| =2 -2 1 0 -1 (gﬁ‘_\gﬁ)
GAAGA
L3 -3 -3 0 0 2 3 (g;:g:)
4 (CAC—A)
G 4| -4 -4 -1 -1 1
A 5 -5 -5 -2 -2 1

Generalization of the theorem on which the DP recursion for pairwise
alignment is based (see p. 18 of " Pairwise alignment 1"):

Theorem
Let alignment A be the concatenation of two alignments B and C, i.e.
A=DB-C. If Ais optimal, then so are B and C.

Proof

Again, we prove the claim by contradiction. Let A be an alignment of s and t, B
one of s’ and t/, and C one of s” and t”. (Thus s = s’s” and t = t't".) Assume
that B is not optimal, then B can be replaced by some alignment B’ of the same
strings ', t’ with higher score than B. Define A’ = B’-C. Then A’ is also an
alignment of s, t, and

score(A") = score(B') + score(C) > score(B) + score(C) = score(.A),

a contradiction to the optimality of A.—The case where C is not optimal is
analogous. |

So it's okay to align optimally the left and the right parts, and then to
concatenate them:

GAAGA (GAAGA
CACA

GAA/ \GA (GAA)/ \?GA)
/N N SN N
o S 2y m OO

bottom-up: concatenate alignments

c

top-down: split sequences into two

Question
But how do we know where to divide them?

7/15
The problem is: The reverse of the theorem is not true!
Concatenating two optimal al's does not always yield an optimal al.:
e.g. (gf) . (;g) yields (gfgg) which is not optimal.
Definition
A cut is a pair of positions (0, m’), where 1 < n’ <n,and1<m' <m
(with |s| = n,|t| = m).
We are looking for a good cut, i.e. one for which there is an optimal
alignment passing through it.
® (3,2) is a good cut: the optimal alignments (féﬁgﬁ), (gﬁfg:), (g_“:g:) all pass
through the cell (3,2), aligning GAA with CA.
® (3,3) is a good cut: the optimal alignment (g:é?ﬁ) passes through the cell
(3,3), aligning GAA with CAC.
® (3,1) is not a good cut, since no optimal alignment passes through cell
(3,1), i.e. no optimal alignment aligns GAA with C.
8/15

Matrix M

® Definition: For i > n’, cell M(i,j) contains an index r s.t. there exists
an optimal alignment with score D(i, j) passing through cell (n', r).

Computation of M(i,):
e fori=n"andj=1,....m: M(n',j)=];
e fori>n 0<j<m:
M(i,j) = M(i’,j"), where D(i, j) derives from cell (i’,;")
—if there is more than one, choose acc. to priority (e.g. left-diag-top)
Note that by definition (',j') € {(i — 1,/),(i — 1,j — 1), (i,j — 1)}.
® Then M(n, m) = r s.t. there is an optimal alignment of s and t which
passes through cell ([n/2],r).
® Thus, we can use the cut (n',r) = ([n/2], M(n, m)) in the divide-step
and recurse with sy ...s, and ti ...t on the left, and s, 1 ...s, and
tr41...tm on the right.

10/15

The problem is: The reverse of the theorem is not true!
Concatenating two optimal al's does not always yield an optimal al.:

eg. (&) (5 vields ($%2), which is not optimal.

Computing a good cut

1. In sequence 1, we will always take the middle cut position n’ = [n/2].

2. In sequence 2, we will remember where the middle row n’ = [n/2]
was crossed.

3. For this, we will need to compute another matrix M (again, in
space-saving manner!).

9/15
Back to the example (p. 4): Here n =5, thus n’ = [n/2] = 3. We
compute the matrix M according to the priority left-diag-top:
D(i,j) c A c A
0 1 2 3 4
0 0 -1 -2 -3 —4
G 1 -1 -1 -2 -3 —4
A2 =2 -2 1 0 -1 M(3ij)[0o 1 2 3 4
A 3 -3 -3 0 0 2 3 01234
¢ 4| -4 4 -1 1 4 o022 4
A 5| -5 -5 -2 -2 1 5 00022

So we have to recurse with r = 2, i.e. GAA,CA (left) and GA,CA (right).

11/15

For the left part GAA,CA, we have n’ = [n/2] = 2, and we get Algorithm PWA(s,t)

1. if max(|s|, |t]) < 2, then return an optimal alignment computed with
D(i.j) c A (Isl,[t) < p g p

0 1 5 N-W-algorithm
2. else
0 0 -1 -2 3. for i =0 to n’ — 1 compute i'th row of D

. o 1 L MGij) [0 1 2 (spa'ce—saving manner, row—wi'se) -
4. for i = [n/2] to n, compute i'th row of D and i'th row of M

A 20 =2 -2 1 2 012 (space-saving manner, row-wise)
5. r < M(n,m)

A 3| -3 -3 0 3 001

return PWA(sy ... sfp/2], t1 - - - t) concatenated
with PWA(S(,,/Q“+1 oo Spy byt t,,-,).

Thus, r =1 and we have to divide these at cut (2, 1), yielding GA,C and

A,A.
12/15 13/15
Analysis (1) Analysis (2)
Time
Space . L . . .
® in the first iteration, we compute the entries of the two matrices D
® all matrix computations are space-saving (row-wise), they all need and M, each in constant time: (n+ 1)(m+ 1)+ [n/2](m+ 1)
linear space in the number of columns, which is always < m 5]
® at any given time, there are the two matrices D and M to be entries, so O(nm) time
computed ® In each iteration, we are exactly halving the problem size (wherever
® nothing needs to be stored for later, once we have computed we cut t, string s is always cut in the middle), thus we get:
r = M(n, m) L -
® thus for the matrix computations we need space O(m); nm + 5nm + 7 +...< nmz % = 2nm € O(nm).

>
Il

® we need to store the partial alignments, whose total length is the 0

length of the final alignment, thus O(n + m)

altogether space O(n+ m)
Thus we doubled the time (asymptotically the same: O(nm)), but reduced

the space from quadratic to linear.

14 /15 15/15

