
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II. semester

Pairwise Alignment 3

Optimal pairwise alignment

in linear space

2 / 15

Given two sequences s, t of length n:

• DP algorithm for global alignment: O(n
2
) time and space

• if we only want the score of an optimal alignment sim(s, t) (problem
variant 1), then we can do this in O(n

2
) time and O(n) space

(space-saving variant)

• But that algo does not give us the optimal alignment itself

(problem variant 2)

• Now: algorithm for computing an optimal alignment itself

in time O(n
2
) but space O(n)

There are several algorithms achieving this, e.g. Hirschberg (1975) a.k.a.

Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the

book by Durbin, Eddy, Krogh, Mitchison: Biological Sequence Analysis, 1998 (ch.

2.6).

3 / 15

s = GAAGA, t = CACA match: 2, mismatch: -1, gap: -1

D(i , j) C A C A
0 1 2 3 4

0 0 �1 �2 �3 �4

G 1 �1 �1 �2 �3 �4

A 2 �2 �2 1 0 �1

A 3 �3 �3 0 0 2

G 4 �4 �4 �1 �1 1

A 5 �5 �5 �2 �2 1

The optimal

alignments are:

1.
�
GAAGA
-CACA

�

2.
�
GAAGA
CA-CA

�

3.
�
GAAGA
C-ACA

�

4.
�
GAAGA
CAC-A

�

4 / 15

Consider the first optimal alignment
�
GAAGA
-CACA

�
:

Idea: Divide-and-conquer
We divide the two sequences s, t in two parts, left and right, align left with

left, right with right, and then concatenate the two alignments:

GAAGA
CACA

GAA
CA

GA
CA

GA
C

A
A

G
C

A
A

GAAGA
-CACA

GAA
-CA

GA
CA

GA
-C

A
A

G
C

A
A() (((

((

(

)))

))

)

top-down: split sequences into two bottom-up: concatenate alignments

Why does this work?

5 / 15

Generalization of the theorem on which the DP recursion for pairwise

alignment is based (see p. 18 of ”Pairwise alignment 1”):

Theorem
Let alignment A be the concatenation of two alignments B and C, i.e.
A = B · C. If A is optimal, then so are B and C.

Proof
Again, we prove the claim by contradiction. Let A be an alignment of s and t, B
one of s

0
and t

0
, and C one of s

00
and t

00
. (Thus s = s

0
s
00
and t = t

0
t
00
.) Assume

that B is not optimal, then B can be replaced by some alignment B0
of the same

strings s
0, t 0 with higher score than B. Define A0

= B0 · C. Then A0
is also an

alignment of s, t, and

score(A0
) = score(B0

) + score(C) > score(B) + score(C) = score(A),

a contradiction to the optimality of A.—The case where C is not optimal is

analogous.

6 / 15

So it’s okay to align optimally the left and the right parts, and then to

concatenate them:

GAAGA
CACA

GAA
CA

GA
CA

GA
C

A
A

G
C

A
A

GAAGA
-CACA

GAA
-CA

GA
CA

GA
-C

A
A

G
C

A
A() (((

((

(

)))

))

)

top-down: split sequences into two bottom-up: concatenate alignments

Question
But how do we know where to divide them?

7 / 15

The problem is: The reverse of the theorem is not true!

Concatenating two optimal al’s does not always yield an optimal al.:

e.g.
�
GA
G-

�
·
�
-C
AC

�
yields

�
GA-C
G-AC

�
, which is not optimal.

Definition
A cut is a pair of positions (n

0,m0
), where 1  n

0  n, and 1  m
0  m

(with |s| = n, |t| = m).

We are looking for a good cut, i.e. one for which there is an optimal

alignment passing through it.

• (3, 2) is a good cut: the optimal alignments
�
GAAGA
-CACA

�
,
�
GAAGA
CA-CA

�
,
�
GAAGA
C-ACA

�
all pass

through the cell (3, 2), aligning GAA with CA.

• (3, 3) is a good cut: the optimal alignment
�
GAAGA
CAC-A

�
passes through the cell

(3, 3), aligning GAA with CAC.

• (3, 1) is not a good cut, since no optimal alignment passes through cell

(3, 1), i.e. no optimal alignment aligns GAA with C.

8 / 15

The problem is: The reverse of the theorem is not true!

Concatenating two optimal al’s does not always yield an optimal al.:

e.g.
�
GA
G-

�
·
�
-C
AC

�
yields

�
GA-C
G-AC

�
, which is not optimal.

Definition
A cut is a pair of positions (n

0,m0
), where 1  n

0  n, and 1  m
0  m

(with |s| = n, |t| = m).

We are looking for a good cut, i.e. one for which there is an optimal

alignment passing through it.

• (3, 2) is a good cut: the optimal alignments
�
GAAGA
-CACA

�
,
�
GAAGA
CA-CA

�
,
�
GAAGA
C-ACA

�
all pass

through the cell (3, 2), aligning GAA with CA.

• (3, 3) is a good cut: the optimal alignment
�
GAAGA
CAC-A

�
passes through the cell

(3, 3), aligning GAA with CAC.

• (3, 1) is not a good cut, since no optimal alignment passes through cell

(3, 1), i.e. no optimal alignment aligns GAA with C.

8 / 15

Computing a good cut

1. In sequence 1, we will always take the middle cut position n
0
= dn/2e.

2. In sequence 2, we will remember where the middle row n
0
= dn/2e

was crossed.

3. For this, we will need to compute another matrix M (again, in

space-saving manner!).

9 / 15

Matrix M

• Definition: For i � n
0
, cell M(i , j) contains an index r s.t. there exists

an optimal alignment with score D(i , j) passing through cell (n
0, r).

• Computation of M(i , j):

• for i = n
0
and j = 1, . . . ,m: M(n

0, j) = j ;

• for i > n
0, 0  j  m:

M(i , j) = M(i
0, j 0), where D(i , j) derives from cell (i

0, j 0)
—if there is more than one, choose acc. to priority (e.g. left-diag-top)

• Note that by definition (i
0, j 0) 2 {(i � 1, j), (i � 1, j � 1), (i , j � 1)}.

• Then M(n,m) = r s.t. there is an optimal alignment of s and t which

passes through cell (dn/2e, r).
• Thus, we can use the cut (n

0, r) = (dn/2e,M(n,m)) in the divide-step

and recurse with s1 . . . sn0 and t1 . . . tr on the left, and sn0+1 . . . sn and

tr+1 . . . tm on the right.

10 / 15

Back to the example (p. 4): Here n = 5, thus n
0
= dn/2e = 3. We

compute the matrix M according to the priority left-diag-top:

D(i , j) C A C A
0 1 2 3 4

0 0 �1 �2 �3 �4

G 1 �1 �1 �2 �3 �4

A 2 �2 �2 1 0 �1

A 3 �3 �3 0 0 2

G 4 �4 �4 �1 �1 1

A 5 �5 �5 �2 �2 1

M(i , j) 0 1 2 3 4

3 0 1 2 3 4

4 0 0 2 2 4

5 0 0 0 2 2

So we have to recurse with r = 2, i.e. GAA,CA (left) and GA,CA (right).

11 / 15

For the left part GAA,CA, we have n
0
= dn/2e = 2, and we get

D(i , j) C A
0 1 2

0 0 �1 �2

G 1 �1 �1 �2

A 2 �2 �2 1

A 3 �3 �3 0

M(i , j) 0 1 2

2 0 1 2

3 0 0 1

Thus, r = 1 and we have to divide these at cut (2, 1), yielding GA,C and

A,A.

12 / 15

Algorithm PWA(s,t)

1. if max(|s|, |t|)  2, then return an optimal alignment computed with

N-W-algorithm

2. else

3. for i = 0 to n
0 � 1 compute i ’th row of D

(space-saving manner, row-wise)

4. for i = dn/2e to n, compute i ’th row of D and i ’th row of M

(space-saving manner, row-wise)

5. r M(n,m)

6. return PWA(s1 . . . sdn/2e, t1 . . . tr) concatenated
with PWA(sdn/2e+1 . . . sn, tr+1 . . . tm).

13 / 15

Analysis (1)

Space

• all matrix computations are space-saving (row-wise), they all need

linear space in the number of columns, which is always  m

• at any given time, there are the two matrices D and M to be

computed

• nothing needs to be stored for later, once we have computed

r = M(n,m)

• thus for the matrix computations we need space O(m);

• we need to store the partial alignments, whose total length is the

length of the final alignment, thus O(n +m)

• altogether space O(n +m)

14 / 15

Analysis (2)

Time

• in the first iteration, we compute the entries of the two matrices D

and M, each in constant time: (n + 1)(m + 1)| {z }
D

+ dn/2e(m + 1)| {z }
M

entries, so O(nm) time

• In each iteration, we are exactly halving the problem size (wherever

we cut t, string s is always cut in the middle), thus we get:

nm +
1

2
nm +

1

4
nm + . . .  nm

1X

k=0

1

2k
= 2nm 2 O(nm).

Thus we doubled the time (asymptotically the same: O(nm)), but reduced

the space from quadratic to linear.

15 / 15

