Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2018/19, II. semester

Pairwise Alignment 3

Optimal pairwise alignment in linear space

Given two sequences s, t of length n:

- DP algorithm for global alignment: $O(n^2)$ time and space
- if we only want the score of an optimal alignment sim(s,t) (problem variant 1), then we can do this in $O(n^2)$ time and O(n) space (space-saving variant)
- But that algo does not give us the optimal alignment itself (problem variant 2)
- Now: algorithm for computing an optimal alignment itself in time $O(n^2)$ but space O(n)

There are several algorithms achieving this, e.g. Hirschberg (1975) a.k.a. Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the book by Durbin, Eddy, Krogh, Mitchison: *Biological Sequence Analysis*, 1998 (ch. 2.6).

$$s = GAAGA, t = CACA$$

match: 2, mismatch: -1, gap: -1

D(i,j)			C	A	C	A
		0	1	A 2	3	4
	0	0	-1	-2 -2 1 0 -1 -2	-3	-4
G	1	-1	-1	-2	-3	-4
A	2	-2	-2	1	0	-1
A	3	-3	-3	0	0	2
G	4	-4	-4	-1	-1	1
A	5	-5	-5	-2	-2	1

The optimal alignments are:

- 1. $\binom{\text{GAAGA}}{-\text{CACA}}$
- $2. \ \binom{\text{gaaga}}{\text{ca-ca}}$
- 3. $\binom{GAAGA}{C-ACA}$
- 4. $\binom{GAAGA}{CAC-A}$

Consider the first optimal alignment (GAAGA):

Idea: Divide-and-conquer

We divide the two sequences s, t in two parts, left and right, align left with left, right with right, and then concatenate the two alignments:

Consider the first optimal alignment (GAAGA):

Idea: Divide-and-conquer

We divide the two sequences s, t in two parts, left and right, align left with left, right with right, and then concatenate the two alignments:

Why does this work?

Generalization of the theorem on which the DP recursion for pairwise alignment is based (see p. 18 of "Pairwise alignment 1"):

Theorem

Let alignment \mathcal{A} be the concatenation of two alignments \mathcal{B} and \mathcal{C} , i.e. $\mathcal{A} = \mathcal{B} \cdot \mathcal{C}$. If \mathcal{A} is optimal, then so are \mathcal{B} and \mathcal{C} .

Generalization of the theorem on which the DP recursion for pairwise alignment is based (see p. 18 of "Pairwise alignment 1"):

Theorem

Let alignment \mathcal{A} be the concatenation of two alignments \mathcal{B} and \mathcal{C} , i.e. $\mathcal{A} = \mathcal{B} \cdot \mathcal{C}$. If \mathcal{A} is optimal, then so are \mathcal{B} and \mathcal{C} .

Proof

Again, we prove the claim by contradiction. Let \mathcal{A} be an alignment of s and t, \mathcal{B} one of s' and t', and \mathcal{C} one of s'' and t''. (Thus s=s's'' and t=t't''.) Assume that \mathcal{B} is not optimal, then \mathcal{B} can be replaced by some alignment \mathcal{B}' of the same strings s', t' with higher score than \mathcal{B} . Define $\mathcal{A}'=\mathcal{B}'\cdot\mathcal{C}$. Then \mathcal{A}' is also an alignment of s, t, and

$$score(A') = score(B') + score(C) > score(B) + score(C) = score(A),$$

a contradiction to the optimality of \mathcal{A} .—The case where \mathcal{C} is not optimal is analogous.

So it's okay to align optimally the left and the right parts, and then to concatenate them:

So it's okay to align optimally the left and the right parts, and then to concatenate them:

Question

But how do we know where to divide them?

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{GA}{G} \cdot \binom{-C}{AC}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{GA}{G-} \cdot \binom{-C}{AC}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

Definition

A cut is a pair of positions (n', m'), where $1 \le n' \le n$, and $1 \le m' \le m$ (with |s| = n, |t| = m).

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{GA}{G} \cdot \binom{-C}{AC}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

Definition

A cut is a pair of positions (n', m'), where $1 \le n' \le n$, and $1 \le m' \le m$ (with |s| = n, |t| = m).

We are looking for a good cut, i.e. one for which there is an optimal alignment passing through it.

• (3,2) is a good cut: the optimal alignments $\binom{GAAGA}{CA-CA}$, $\binom{GAAGA}{CA-CA}$, $\binom{GAAGA}{C-ACA}$ all pass through the cell (3,2), aligning GAA with CA.

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{GA}{G} \cdot \binom{-C}{G}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

Definition

A cut is a pair of positions (n', m'), where $1 \le n' \le n$, and $1 \le m' \le m$ (with |s| = n, |t| = m).

We are looking for a good cut, i.e. one for which there is an optimal alignment passing through it.

- (3,2) is a good cut: the optimal alignments $\binom{GAAGA}{CA-CA}$, $\binom{GAAGA}{CA-CA}$, $\binom{GAAGA}{C-ACA}$ all pass through the cell (3,2), aligning GAA with CA.
- (3,3) is a good cut: the optimal alignment (GAAGA) passes through the cell (3,3), aligning GAA with CAC.

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{GA}{G} \cdot \binom{-C}{G}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

Definition

A cut is a pair of positions (n', m'), where $1 \le n' \le n$, and $1 \le m' \le m$ (with |s| = n, |t| = m).

We are looking for a good cut, i.e. one for which there is an optimal alignment passing through it.

- (3,2) is a good cut: the optimal alignments $\binom{GAAGA}{CA-CA}$, $\binom{GAAGA}{CA-CA}$, $\binom{GAAGA}{C-ACA}$ all pass through the cell (3,2), aligning GAA with CA.
- (3,3) is a good cut: the optimal alignment (GAAGA) passes through the cell (3,3), aligning GAA with CAC.
- (3,1) is not a good cut, since no optimal alignment passes through cell (3,1), i.e. no optimal alignment aligns GAA with C.

Computing a good cut

- 1. In sequence 1, we will always take the middle cut position $n' = \lceil n/2 \rceil$.
- 2. In sequence 2, we will remember where the middle row $n' = \lceil n/2 \rceil$ was crossed.
- 3. For this, we will need to compute another matrix M (again, in space-saving manner!).

• Definition: For $i \ge n'$, cell M(i,j) contains an index r s.t. there exists an optimal alignment with score D(i,j) passing through cell (n',r).

- Definition: For $i \ge n'$, cell M(i,j) contains an index r s.t. there exists an optimal alignment with score D(i,j) passing through cell (n',r).
- Computation of M(i,j):
 - for i = n' and j = 1, ..., m: M(n', j) = j;
 - for $i > n', 0 \le j \le m$: M(i,j) = M(i',j'), where D(i,j) derives from cell (i',j')—if there is more than one, choose acc. to priority (e.g. left-diag-top)

- Definition: For $i \ge n'$, cell M(i,j) contains an index r s.t. there exists an optimal alignment with score D(i,j) passing through cell (n',r).
- Computation of M(i,j):
 - for i = n' and j = 1, ..., m: M(n', j) = j;
 - for $i > n', 0 \le j \le m$: M(i,j) = M(i',j'), where D(i,j) derives from cell (i',j')—if there is more than one, choose acc. to priority (e.g. left-diag-top)
- Note that by definition $(i', j') \in \{(i-1, j), (i-1, j-1), (i, j-1)\}.$

- Definition: For $i \ge n'$, cell M(i,j) contains an index r s.t. there exists an optimal alignment with score D(i,j) passing through cell (n',r).
- Computation of M(i,j):
 - for i = n' and j = 1, ..., m: M(n', j) = j;
 - for $i > n', 0 \le j \le m$: M(i,j) = M(i',j'), where D(i,j) derives from cell (i',j')—if there is more than one, choose acc. to priority (e.g. left-diag-top)
- Note that by definition $(i', j') \in \{(i-1, j), (i-1, j-1), (i, j-1)\}.$
- Then M(n, m) = r s.t. there is an optimal alignment of s and t which passes through cell $(\lceil n/2 \rceil, r)$.

- Definition: For $i \ge n'$, cell M(i,j) contains an index r s.t. there exists an optimal alignment with score D(i,j) passing through cell (n',r).
- Computation of M(i, j):
 - for i = n' and j = 1, ..., m: M(n', j) = j;
 - for i > n', $0 \le j \le m$: M(i,j) = M(i',j'), where D(i,j) derives from cell (i',j')—if there is more than one, choose acc. to priority (e.g. left-diag-top)
- Note that by definition $(i', j') \in \{(i-1, j), (i-1, j-1), (i, j-1)\}.$
- Then M(n, m) = r s.t. there is an optimal alignment of s and t which passes through cell $(\lceil n/2 \rceil, r)$.
- Thus, we can use the cut $(n',r)=(\lceil n/2\rceil,M(n,m))$ in the divide-step and recurse with $s_1\ldots s_{n'}$ and $t_1\ldots t_r$ on the left, and $s_{n'+1}\ldots s_n$ and $t_{r+1}\ldots t_m$ on the right.

Back to the example (p. 4): Here n = 5, thus $n' = \lceil n/2 \rceil = 3$. We compute the matrix M according to the priority *left-diag-top*:

D(i,j)			C	A	С	A						
		0	1	2	3	4						
	0	0	-1	-2	-3	-4						
G	1	-1	-1	-2	-3	-4						
A	2	-2	-2	1	0	-1	M(i,j)	0	1	2	3	4_
А	3	-3	-3	0	0	2	3	0	1	2	3	4
G	4	-4	-4	-1	-1	1	4	0	0	2	2	4
A	5	-5	-5	-2	-2	1	5	0	0	0	2	2

So we have to recurse with r=2, i.e. GAA, CA (left) and GA, CA (right).

For the left part GAA, CA, we have $n' = \lceil n/2 \rceil = 2$, and we get

D(i,j)			C 1	A				
		0	1	2				
	0	0	-1	-2	<i>M</i> (<i>i</i> , <i>j</i>) 2 3			
G	1	-1	-1	-2	M(i,j)	0	1	2
A	2	-2	-2	1	2	0	1	2
A	3	-3	-3	0	3	0	0	1

Thus, r=1 and we have to divide these at cut (2,1), yielding GA,C and A,A.

Algorithm PWA(s,t)

- 1. if $\max(|s|,|t|) \le 2$, then return an optimal alignment computed with N-W-algorithm
- 2. else
- 3. for i = 0 to n' 1 compute i'th row of D (space-saving manner, row-wise)
- 4. for $i = \lceil n/2 \rceil$ to n, compute i'th row of D and i'th row of M (space-saving manner, row-wise)
- 5. $r \leftarrow M(n, m)$
- 6. return $PWA(s_1 \dots s_{\lceil n/2 \rceil}, t_1 \dots t_r)$ concatenated with $PWA(s_{\lceil n/2 \rceil+1} \dots s_n, t_{r+1} \dots t_m)$.

Space

• all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always $\leq m$

- all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always $\leq m$
- at any given time, there are the two matrices D and M to be computed

- all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always ≤ m
- at any given time, there are the two matrices D and M to be computed
- nothing needs to be stored for later, once we have computed r = M(n, m)

- all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always ≤ m
- at any given time, there are the two matrices D and M to be computed
- nothing needs to be stored for later, once we have computed r = M(n, m)
- thus for the matrix computations we need space O(m);

- all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always $\leq m$
- at any given time, there are the two matrices D and M to be computed
- nothing needs to be stored for later, once we have computed r = M(n, m)
- thus for the matrix computations we need space O(m);
- we need to store the partial alignments, whose total length is the length of the final alignment, thus O(n+m)

- all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always $\leq m$
- at any given time, there are the two matrices D and M to be computed
- nothing needs to be stored for later, once we have computed r = M(n, m)
- thus for the matrix computations we need space O(m);
- we need to store the partial alignments, whose total length is the length of the final alignment, thus O(n+m)
- altogether space O(n+m)

Time

• in the first iteration, we compute the entries of the two matrices D and M, each in constant time: $\underbrace{(n+1)(m+1)}_{D} + \underbrace{\lceil n/2 \rceil (m+1)}_{M}$ entries, so O(nm) time

Time

- in the first iteration, we compute the entries of the two matrices D and M, each in constant time: $\underbrace{(n+1)(m+1)}_{D} + \underbrace{\lceil n/2 \rceil (m+1)}_{M}$ entries, so O(nm) time
- In each iteration, we are exactly halving the problem size (wherever we cut t, string s is always cut in the middle), thus we get:

$$nm + \frac{1}{2}nm + \frac{1}{4}nm + \ldots \leq nm\sum_{k=0}^{\infty} \frac{1}{2^k} = 2nm \in O(nm).$$

Time

- in the first iteration, we compute the entries of the two matrices D and M, each in constant time: $\underbrace{(n+1)(m+1)}_{D} + \underbrace{\lceil n/2 \rceil (m+1)}_{M}$ entries, so O(nm) time
- In each iteration, we are exactly halving the problem size (wherever we cut t, string s is always cut in the middle), thus we get:

$$nm + \frac{1}{2}nm + \frac{1}{4}nm + \ldots \leq nm\sum_{k=0}^{\infty} \frac{1}{2^k} = 2nm \in O(nm).$$

Thus we doubled the time (asymptotically the same: O(nm)), but reduced the space from quadratic to linear.