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Semiglobal alignment

match: 1,
mismatch: -1,

gap: -1

CAGCGTACACT

---CCTA----

score −5

CAGCGTACACT

C--C-T--A--

score −3

• The left alignment seems better, but it has a lower score.

• We would like the extremal gaps (before and after the second string)
not to count at all.

• Note that this is not covered by local alignment (why?).
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Semiglobal alignment

match: 1,
mismatch: -1,

gap: -1

If we do not count the extremal gaps, then we get:

CAGCGTACACT

---CCTA----

score 2

CAGCGTACACT

C--C-T--A--

score −1

. . . as desired, the score now reflects that the left alignment is better than
the right one.
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Semiglobal alignment: algorithm

gaps matched here should be free action

beginning of s 0s in first column
end of s maximize over last column
beginning of t 0s in first row
end of t maximize over last row

Analysis

time and space O(nm)
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Semiglobal alignment: example

The global similarity of the two strings s = ACGC and t = GCTC is 0, with (unique)

optimal alignment
(
ACGC

GCTC

)
. Let us compute an optimal semiglobal alignment of s and t,

where we set all four types of external gaps as free, and match: +1, mism., gap = -1.

D(i , j) G C T C

0 1 2 3 4

0 0 0 0 0 0

A 1 0 −1 −1 −1 −1

C 2 0 −1 0 −1 0

G 3 0 1 0 −1 −1

C 4 0 0 2 1 0

optimal
semiglobal
alignment:

ACGC--

--GCTC

score = 2

6 / 17



Semiglobal alignment

N.B.

• Semiglobal alignment is also called end-space-free alignment.

• It is not one algorithm, but (strictly speaking) 15 different ones,
depending on where we want to have charge-free gaps (e.g. beginning
and end of first sequence; beginning of first, end of second; etc.)

Applications include:

• find a prefix of s with maximum similarity to t - which variant do we
need?

• approximate overlap finding (e.g. for sequence assembly): find prefix
s ′ of s and suffix t ′ of t s.t. sim(s ′, t ′) maximal, or vice versa (prefix
of t with suffix of s) - which variant do we need?

• approximate substring match: find a substring s ′ of s with sim(s ′, t)
maximal - which variant do we need?

7 / 17



Semiglobal alignment

N.B.

• Semiglobal alignment is also called end-space-free alignment.

• It is not one algorithm, but (strictly speaking) 15 different ones,
depending on where we want to have charge-free gaps (e.g. beginning
and end of first sequence; beginning of first, end of second; etc.)

Applications include:

• find a prefix of s with maximum similarity to t - which variant do we
need?

• approximate overlap finding (e.g. for sequence assembly): find prefix
s ′ of s and suffix t ′ of t s.t. sim(s ′, t ′) maximal, or vice versa (prefix
of t with suffix of s) - which variant do we need?

• approximate substring match: find a substring s ′ of s with sim(s ′, t)
maximal - which variant do we need?

7 / 17



Semiglobal alignment

N.B.

• Semiglobal alignment is also called end-space-free alignment.

• It is not one algorithm, but (strictly speaking) 15 different ones,
depending on where we want to have charge-free gaps (e.g. beginning
and end of first sequence; beginning of first, end of second; etc.)

Applications include:

• find a prefix of s with maximum similarity to t - which variant do we
need?

• approximate overlap finding (e.g. for sequence assembly): find prefix
s ′ of s and suffix t ′ of t s.t. sim(s ′, t ′) maximal, or vice versa (prefix
of t with suffix of s) - which variant do we need?

• approximate substring match: find a substring s ′ of s with sim(s ′, t)
maximal - which variant do we need?

7 / 17



Semiglobal alignment

N.B.

• Semiglobal alignment is also called end-space-free alignment.

• It is not one algorithm, but (strictly speaking) 15 different ones,
depending on where we want to have charge-free gaps (e.g. beginning
and end of first sequence; beginning of first, end of second; etc.)

Applications include:

• find a prefix of s with maximum similarity to t - which variant do we
need?

• approximate overlap finding (e.g. for sequence assembly): find prefix
s ′ of s and suffix t ′ of t s.t. sim(s ′, t ′) maximal, or vice versa (prefix
of t with suffix of s) - which variant do we need?

• approximate substring match: find a substring s ′ of s with sim(s ′, t)
maximal - which variant do we need?

7 / 17



Semiglobal alignment

N.B.

• Semiglobal alignment is also called end-space-free alignment.

• It is not one algorithm, but (strictly speaking) 15 different ones,
depending on where we want to have charge-free gaps (e.g. beginning
and end of first sequence; beginning of first, end of second; etc.)

Applications include:

• find a prefix of s with maximum similarity to t - which variant do we
need?

• approximate overlap finding (e.g. for sequence assembly): find prefix
s ′ of s and suffix t ′ of t s.t. sim(s ′, t ′) maximal, or vice versa (prefix
of t with suffix of s) - which variant do we need?

• approximate substring match: find a substring s ′ of s with sim(s ′, t)
maximal - which variant do we need?

7 / 17



Affine gap functions
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Affine gap functions

match: 2, mismatch: -1, gap: -1

GACGCTGCCAC GACGCTGCCAC

-AC-----CA- -A--C--C-A-

• Both alignments have score 1, but there is a big difference:

• Assuming that t is similar to a substring of s (namely to ACGCTGCCA),
then the first alignment has only one long gap, while the second has 3.

• Each gap, independent of its length, suggests that one evolutionary
event happened (insertion or deletion of a stretch of DNA).

• The first alignment has one such event, the second three.

• We believe that the first one is more likely (Occam’s razor), so should
have higher score.

• Occam’s razor: The simplest explanation is the best.
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Affine gap functions

• We would like to give k gaps in one block a higher score than k
individual gaps.

• Longer gaps should have lower score than shorter gaps.

Affine gap functions:

• gap open: h < 0

• gap extend: g < 0

• score of k gaps = h + kg , for k ≥ 1

• typically: h < g (i.e. the penalty for opening a gap is larger than for
continuing one)

• (Sometimes h + g is referred to as ”gap open”, and g as ”gap extend”)
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Affine gap functions

match: 2, mismatch: -1, gaps: h = −3, g = −1

GACGCTGCCAC GACGCTGCCAC

-AC-----CA- -A--C--C-A-

score = −8 score = −14

• So now the score reflects that the first al. is better than the second.

• But how do we compute the new score?
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Computation

Recall the central idea of the DP-algorithm:

If A is an alignment and B is the same al. without the last column, then

• score(A) = score(B) + score(last column).

• If A is optimal, then B is also optimal.
• There are 3 possibilities for the last column:

1. last column is
(∗
∗
)

(char-char)

2. last column is
(∗
−
)

(char-gap)

3. last column is
(−
∗
)

(gap-char)

The problem now is that in cases 2. and 3., the score of the last column
depends on what comes before! E.g. with h = −3, g = −1, the score of(
A
−
)

is −1 if preceded by a column of the type
(∗
−
)
, and −4 otherwise.
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Computation

• So we have to distinguish between different types of B’s (current
alignment without last column), according to what type its last
column is.

• We will do this via 3 different matrices, each of size (n + 1)(m + 1):

• A(i , j) = highest score of an alignment of i-length prefix of s and
j-length prefix of t ending with

(
si
tj

)
• B(i , j) = highest score of an alignment of i-length prefix of s and

j-length prefix of t ending with
(−
tj

)
• C (i , j) = highest score of an alignment of i-length prefix of s and

j-length prefix of t ending with
(
si
−
)

• Computation of entries will depend on entries from the other matrices.
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Computation

Matrix A: Score of last column does not depend on alignment B
• for i = 0 or j = 0: There is no alignment ending with a column

(∗
∗
)

• for i , j > 0 : A(i , j) = best alignment of any type + match/mismatch︸ ︷︷ ︸
f (si ,tj )

Computation of entries:

• A(i , 0) = A(0, j) = −∞ for i = 1, . . . , n, j = 1, . . . ,m, and
A(0, 0) = 0 (this is necessary for the recursion)

• for i , j > 0: A(i , j) = max


A(i − 1, j − 1) + f (si , tj)

B(i − 1, j − 1) + f (si , tj)

C (i − 1, j − 1) + f (si , tj)

14 / 17



Computation

Matrix A: Score of last column does not depend on alignment B
• for i = 0 or j = 0: There is no alignment ending with a column

(∗
∗
)

• for i , j > 0 : A(i , j) = best alignment of any type + match/mismatch︸ ︷︷ ︸
f (si ,tj )

Computation of entries:

• A(i , 0) = A(0, j) = −∞ for i = 1, . . . , n, j = 1, . . . ,m, and
A(0, 0) = 0 (this is necessary for the recursion)

• for i , j > 0: A(i , j) = max


A(i − 1, j − 1) + f (si , tj)

B(i − 1, j − 1) + f (si , tj)

C (i − 1, j − 1) + f (si , tj)

14 / 17



Computation

Matrix B : Score of last column depends on B
• for j = 0: There is no alignment ending with a column

(−
∗
)

• for i = 0, j > 0: Score of alignment is score of one gap of length j .

• for i , j > 0 :

B(i , j) = max

{
best al. of type B + extend an existing gap

best al. of types A or C + start a new gap

Computation of entries:

• B(i , 0) = −∞ for i = 0, . . . , n,

• B(0, j) = h + j · g for j = 1, . . . ,m

• for i , j > 0: B(i , j) = max


A(i , j − 1) + (h + g)

B(i , j − 1) + g

C (i , j − 1) + (h + g)
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Computation

Matrix C : Score of last column depends on B
• for i = 0: There is no alignment ending with a column

(∗
−
)

• for i > 0, j = 0: Score of alignment is score of one gap of length j .

• for i , j > 0 :

C (i , j) = max

{
best al. of type C + extend an existing gap

best al. of types A or B + start a new gap

Computation of entries:

• C (0, j) = −∞ for j = 0, . . . ,m,

• C (i , 0) = h + i · g for i = 1, . . . , n

• for i , j > 0: C (i , j) = max


A(i − 1, j) + (h + g)

B(i − 1, j) + (h + g)

C (i − 1, j) + g

16 / 17



Computation

Matrix C : Score of last column depends on B
• for i = 0: There is no alignment ending with a column

(∗
−
)

• for i > 0, j = 0: Score of alignment is score of one gap of length j .

• for i , j > 0 :

C (i , j) = max

{
best al. of type C + extend an existing gap

best al. of types A or B + start a new gap

Computation of entries:

• C (0, j) = −∞ for j = 0, . . . ,m,

• C (i , 0) = h + i · g for i = 1, . . . , n

• for i , j > 0: C (i , j) = max


A(i − 1, j) + (h + g)

B(i − 1, j) + (h + g)

C (i − 1, j) + g
16 / 17



Analysis

• Space: for each matrix: O(nm), so altogether O(nm)

• Time: Computation of every entry is constant, and there are
3(n + 1)(m + 1) = O(nm) entries, so altogether O(nm).

• Backtracing: as before, possibly jumping between different matrices.
Time: O(length of optimal alignment) = O(n + m)

• Thus asymptotically the same time and space complexity as the basic
algorithm.

• However, we do pay for the better gap function by increasing both
time and space by a factor of 3.

• Affine gap penalties are much more reasonable (realistic, useful) than
linear gap penalties, and they are universally applied. (All alignment
programs use affine gap functions.)
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