## Finding an optimal alignment

Recall Variant 2: not only $\operatorname{sim}(s, t)$, but also an optimal alignment.
Backtrace in DP-table

- possibility 1: find correct path, redoing computation (more time)
- possibility 2: compute backtracing table during main algorithm (more space)


## Analysis

- poss. 1: time: up to 3 operations per column of alignment computed, so $O$ (length of alignment) $=O(n+m)$, or $O(n)$ if $n=m$; space: only additional space for the output alignment: $O(n+m)$
- poss. 2: time: one operation per column of alignment, so $O(n+m)$; space: additional $O(n \cdot m)$ space for matrix containing traceback pointers

Algorithm Backtracing in DP-table (without traceback pointers)
Input: strings $s, t$ with $|s|=n,|t|=m$; scoring function $f$; DP-table
Output: an optimal alignment $\mathcal{A}$ of $\operatorname{sim}(s, t)$
$i \leftarrow n ; j \leftarrow m ; \mathcal{A} \leftarrow$ empty alignment;
while ( $i>0$ and $j>0$ )
do if $D(i, j)=D(i-1, j)+g$
then $\mathcal{A} \leftarrow\binom{\mathbf{s}_{\mathbf{i}}}{-} \mathcal{A} ;$
$i \leftarrow i-1$;
else if $D(i, j)=D(i-1, j-1)+f\left(s_{i}, t_{j}\right)$
then $\mathcal{A} \leftarrow\binom{\mathbf{s}_{\mathrm{s}}}{\mathrm{t}_{\mathrm{j}}} \mathcal{A}$;
$i \leftarrow i-1 ; j \leftarrow j-1 ;$
else $\mathcal{A} \leftarrow\left(\left(_{\mathrm{t}_{j}}^{-}\right) \mathcal{A}\right.$;
$j \leftarrow j-1 ;$
if $i>0$ then $\mathcal{A} \leftarrow\binom{s_{1} \ldots \mathrm{~s}_{\mathrm{i}}}{-\ldots}. \mathcal{A}$;
if $j>0$ then $\mathcal{A} \leftarrow\binom{(-\ldots-)}{t_{1} \ldots \mathrm{t}_{\mathrm{j}}} \mathcal{A}$;
return $\mathcal{A}$;

## Local alignment

## Local alignment

- Often what we are interested in are so-called regions of high similarity in the two input strings, i.e. substrings which are similar, and not how similar the entire two strings are.
- So we want to find substrings $s^{\prime}$ of $s$, and $t^{\prime}$ of $t$ s.t.
$\operatorname{sim}\left(s^{\prime}, t^{\prime}\right)=\max \{\operatorname{sim}(u, v): u$ substring of $s, v$ substring of $t\}$.
- Typically here we also want to know all such pairs of substrings themselves and their alignment, not only their similarity value.

Finding an optimal alignment

## N.B

1. Typically we want only one optimal alignment
2. Order of computation matters for output!

Re 1:
There could be an exponential number of optimal alignments, see $s=A A A A \cdots A A A=A^{2 n}, t=A^{n}$, then every alignment of length $2 n$ (i.e. aligning each character of $t$ with some character of $s$, and aligning the remaining $n$ characters of $s$ with gaps) is optimal. But there are $\binom{2 n}{n} \geq 2^{n}$ such alignments.

## Space-saving variant

- For computing row $i$, we only need row $i-1$
- after having finished computing row $i$, we never need row $i-1$ again
- so we can overwrite row $i-1$ after having finished row $i$
- Altogether, at any given time, we only need the current row and the previous row.
- The same could be done with two columns instead of two rows.
- Space: $O(\min (n, m))$, for $n=m: O(n)$
- Time: $O(n m)$ (resp. $O\left(n^{2}\right)$ ), since we still need to compute all $(n+1)(m+1)$ entries
- This variant does not allow to compute an optimal alignment! (i.e. does not solve variant 2 of the problem)

Smith-Waterman DP algorithm for local alignment

- Smith-Waterman DP-algorithm (1981).
- Algorithm similar to NW-algorithm for global alignment.
- Crucial points:

1. for each pair of indices $i, j$, compute the highest score of an alignment of any substring $u$ ending in position $i$ of $s$ with any substring $v$ ending in position $j$ of $t$
2. the empty string is always a substring (in every position), and score of empty alignment $=0$
3. so all entries $\geq 0$
4. for the final output: find the maximum over all entries of the matrix

- Now we maximize like before and over 0 :
$L(i, j)=\max \left\{L(i-1, j)+g, L(i-1, j-1)+f\left(s_{i}, t_{j}\right), L(i, j-1)+g, 0\right\}$

Smith-Waterman DP algorithm for local alignment
Algorithm DP algorithm for local alignment
Input: strings $s, t$, with $|s|=n,|t|=m$; scoring function $f$
Output: value max
for $j=0$ to $m$ do $L(0, j) \leftarrow 0$;
for $i=1$ to $n$ do $L(i, 0) \leftarrow 0$;
for $i=1$ to $n$ do
for $j=1$ to $m$ do

$$
L(i, j) \leftarrow \max \left\{\begin{array}{l}
L(i-1, j)+g \\
L(i-1, j-1)+f\left(s_{i}, t_{j}\right) \\
L(i, j-1)+g \\
0
\end{array}\right.
$$

6. return $\max =\max \{L(i, j): 0 \leq i \leq n, 0 \leq j \leq m\}$;

Smith-Waterman DP algorithm for local alignment

Finding all optimal local alignments

- Find all occurrences of $\max \{L(i, j): 0 \leq i \leq n, 0 \leq j \leq m\}$
- from each, backtrace until reaching a 0


## Analysis

- $O(n m)$ time and space for computing matrix $L$
- $O(K)$ time for finding all optimal local alignments, where
 alignments, i.e. the output size.

Question: How do we compute max in line 6.?

