
Finding an optimal alignment

Recall Variant 2: not only sim(s, t), but also an optimal alignment.

Backtrace in DP-table

• possibility 1: find correct path, redoing computation (more time)

• possibility 2: compute backtracing table during main algorithm (more
space)

Analysis

• poss. 1: time: up to 3 operations per column of alignment computed,
so O(length of alignment) = O(n +m), or O(n) if n = m; space:
only additional space for the output alignment: O(n +m)

• poss. 2: time: one operation per column of alignment, so O(n +m);
space: additional O(n ·m) space for matrix containing traceback
pointers

27 / 34

Finding an optimal alignment

N.B.

1. Typically we want only one optimal alignment

2. Order of computation matters for output!

Re 1:

There could be an exponential number of optimal alignments, see
s = AAAA · · ·AAA = A

2n, t = A
n, then every alignment of length 2n (i.e.

aligning each character of t with some character of s, and aligning the
remaining n characters of s with gaps) is optimal. But there are

�2n
n

�
� 2n

such alignments.

28 / 34

Algorithm Backtracing in DP-table (without traceback pointers)

Input: strings s, t with |s| = n, |t| = m; scoring function f ; DP-table
Output: an optimal alignment A of sim(s, t)
1. i n; j m; A empty alignment;
2. while (i > 0 and j > 0)
3. do if D(i , j) = D(i � 1, j) + g

4. then A
�
si
�
�
A;

5. i i � 1;
6. else if D(i , j) = D(i � 1, j � 1) + f (si , tj)
7. then A

�
si
tj

�
A;

8. i i � 1; j j � 1;
9. else A

��
tj

�
A;

10. j j � 1;
11. if i > 0 then A

�
s1...si
�...�

�
A;

12. if j > 0 then A
��...�
t1...tj

�
A;

13. return A;

29 / 34

Space-saving variant

• For computing row i , we only need row i � 1

• after having finished computing row i , we never need row i � 1 again

• so we can overwrite row i � 1 after having finished row i

• Altogether, at any given time, we only need the current row and the
previous row.

• The same could be done with two columns instead of two rows.

• Space: O(min(n,m)), for n = m: O(n)

• Time: O(nm) (resp. O(n2)), since we still need to compute all
(n + 1)(m + 1) entries

• This variant does not allow to compute an optimal alignment! (i.e.
does not solve variant 2 of the problem)

30 / 34

Local alignment

Local alignment

• Often what we are interested in are so-called regions of high similarity
in the two input strings, i.e. substrings which are similar, and not how
similar the entire two strings are.

• So we want to find substrings s 0 of s, and t
0 of t s.t.

sim(s 0, t 0) = max{sim(u, v) : u substring of s, v substring of t}.

• Typically here we also want to know all such pairs of substrings
themselves and their alignment, not only their similarity value.

31 / 34

Smith-Waterman DP algorithm for local alignment

• Smith-Waterman DP-algorithm (1981).

• Algorithm similar to NW-algorithm for global alignment.
• Crucial points:

1. for each pair of indices i , j , compute the highest score of an alignment
of any substring u ending in position i of s with any substring v ending
in position j of t

2. the empty string is always a substring (in every position), and score of
empty alignment = 0

3. so all entries � 0
4. for the final output: find the maximum over all entries of the matrix

• Now we maximize like before and over 0:
L(i , j) = max{L(i�1, j)+g , L(i�1, j�1)+ f (si , tj), L(i , j�1)+g , 0}

32 / 34

Smith-Waterman DP algorithm for local alignment

Algorithm DP algorithm for local alignment

Input: strings s, t, with |s| = n, |t| = m; scoring function f

Output: value max

1. for j = 0 to m do L(0, j) 0;
2. for i = 1 to n do L(i , 0) 0;
3. for i = 1 to n do

4. for j = 1 to m do

5. L(i , j) max

8
>>>><

>>>>:

L(i � 1, j) + g

L(i � 1, j � 1) + f (si , tj)

L(i , j � 1) + g

0
6. return max = max{L(i , j) : 0  i  n, 0  j  m};

Question: How do we compute max in line 6.?

33 / 34

Smith-Waterman DP algorithm for local alignment

Finding all optimal local alignments

• Find all occurrences of max{L(i , j) : 0  i  n, 0  j  m}
• from each, backtrace until reaching a 0

Analysis

• O(nm) time and space for computing matrix L

• O(K) time for finding all optimal local alignments, where
K =

P
A opt. local al. |A| is the sum of the lengths of the optimal local

alignments, i.e. the output size.

34 / 34

