Finding an optimal alignment

Recall Variant 2: not only sim(s, t), but also an optimal alignment.

Backtrace in DP-table

® possibility 1: find correct path, redoing computation (more time)

® possibility 2: compute backtracing table during main algorithm (more
space)

Analysis

27/34
Algorithm Backtracing in DP-table (without traceback pointers)
Input: strings s, t with |s| = n,|t| = m; scoring function f; DP-table
Output: an optimal alignment A of sim(s, t)
1. i< n;j< m; A<+ empty alignment;
2. while (i >0 and j > 0)
3. doif D(i,j)=D(i—1,j)+g
4. then A« (%) A4;
5. i i—1;
6. else if D(i,j) = D(i —1,j — 1) + f(s;, t;)
7. then A+ (:;)A
8. P is e -1
9. else A<« (_)A
10. je j(f%;
11. if i > 0 then A+ (3°1) 4
12, if j > 0 then A« () A;
13. return A;
29/34

® poss. 1: time: up to 3 operations per column of alignment computed,
so O(length of alignment) = O(n+ m), or O(n) if n = m; space:
only additional space for the output alignment: O(n+ m)

® poss. 2: time: one operation per column of alignment, so O(n+ m);
space: additional O(n - m) space for matrix containing traceback
pointers

Local alignment

Local alignment

® Often what we are interested in are so-called regions of high similarity
in the two input strings, i.e. substrings which are similar, and not how
similar the entire two strings are.

® So we want to find substrings s’ of s, and t’ of t s.t.
sim(s’, t') = max{sim(u, v) : u substring of s, v substring of t}.

® Typically here we also want to know all such pairs of substrings
themselves and their alignment, not only their similarity value.

N.B.

1.
2.

Finding an optimal alignment

Typically we want only one optimal alignment
Order of computation matters for output!

Re 1:

There could be an exponential number of optimal alignments, see
s=AAAA- .- AAA = A", t = A", then every alignment of length 2n (i.e.
aligning each character of t with some character of s, and aligning the
remaining n characters of s with gaps) is optimal. But there are (27) > 2"
such alignments.

28/34

Space-saving variant

For computing row i, we only need row i — 1

after having finished computing row i, we never need row i — 1 again
so we can overwrite row i — 1 after having finished row /
Altogether, at any given time, we only need the current row and the
previous row.

The same could be done with two columns instead of two rows.
Space: O(min(n, m)), for n=m: O(n)

Time: O(nm) (resp. O(n?)), since we still need to compute all
(n+1)(m + 1) entries

This variant does not allow to compute an optimal alignment! (i.e.
does not solve variant 2 of the problem)

30/34

Smith-Waterman DP algorithm for local alignment

Smith-Waterman DP-algorithm (1981).
Algorithm similar to NW-algorithm for global alignment.
Crucial points:
1. for each pair of indices i, j, compute the highest score of an alignment
of any substring u ending in position i of s with any substring v ending
in position j of t
2. the empty string is always a substring (in every position), and score of
empty alignment = 0
3. so all entries > 0
4. for the final output: find the maximum over all entries of the matrix

Now we maximize like before and over 0:
L(i,j) = max{L(i—1,j)+g, L(i—1,j—1)+f(s;, t;), L(i,j —1)+g,0}

32/34

Smith-Waterman DP algorithm for local alignment Smith-Waterman DP algorithm for local alignment

Algorithm DP algorithm for local alignment

Input: strings s, t, with |s| = n, |t| = m; scoring function Finding all optimal local alignments
Output: value max
1. forj=0to mdo L(0,j) < 0; ® Find all occurrences of max{L(i,j) : 0<i<n,0<j<m}
2. fori=1tondo L(i,0) < 0; ® from each, backtrace until reaching a 0
3. fori=1tondo
4 for j =1 to mdo Analysis
Wi-L)+eg
. L(i—1,j—1)+ (st 1) ® O(nm) time and space for computing matrix L
5. L(i,j) ¢ max . e O(K) time for finding all optimal local alignments, where
L(i,j—1)+g . .
0 K =3 4 opt. local al, [A| is the sum of the lengths of the optimal local

.. . . alignments, i.e. the output size.
6. return max = max{L(i,j) : 0<i<n,0<j<m};

Question: How do we compute max in line 6.7

33/34 34/34

