
Number of alignments

List all alignments of s = AC and t = GA.

You should have got these 13 al’s:

-AC A-C --AC A--C -A-C

GA- GA- GA-- -GA- G-A-

AC A-C -AC

GA -GA G-A

AC- AC- AC-- -AC- A-C-

-GA G-A --GA G--A -G-A

10 / 34

Number of alignments

Question

How many alignments are there in general for two strings s and t?

Observation

The number of alignments depends only on the length of s and t.

Def.

Let N(n,m) = number of al’s of two strings of length n and m.

We know:

• N(2, 2) = 13

• N(1, 1) = 3

• N(n, 0) = 1, N(0,m) = 1

• we set: N(0, 0) = 1 (empty alignment)

11 / 34

Number of alignments

N(n,m) 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3

2 1 13

3 1

4 1

5 1

12 / 34

Number of alignments

Look at the last column of the alignments:

-AC A-C --AC A--C -A-C

GA- GA- GA-- -GA- G-A-

AC A-C -AC

GA -GA G-A

AC- AC- AC-- -AC- A-C-

-GA G-A --GA G--A -G-A

13 / 34

Number of alignments

We have a recursive formula:

• N(n, 0) = N(0,m) = 1 for n,m � 0

• and for n,m > 0:

N(n,m) = N(n � 1,m) + N(n � 1,m � 1) + N(n,m � 1)

14 / 34

Number of alignments

N(n,m) 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3

5 7 9 11

2 1

5

13

25 41 61

3 1

7 25 63 129 231

4 1

9 41 129 321 681

5 1

11 61 231 681 1683

15 / 34



Number of alignments

N(n,m) 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3 5 7 9 11

2 1 5 13 25 41 61

3 1 7 25 63 129 231

4 1 9 41 129 321 681

5 1 11 61 231 681 1683

15 / 34

Number of alignments

Let’s look at the case n = m:

n 0 1 2 3 4 5 . . . 1000
N(n, n) 1 3 13 63 321 1683 . . . ⇡ 10767

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:

For any al. A, we have max(n,m)  |A|  (n +m), thus:

N(n,m) ·max(n,m)  no. of steps of algo.  N(n,m) · (n +m)

Therefore, it has exponential running time: too slow!

16 / 34

Number of alignments

Let’s look at the case n = m:

n 0 1 2 3 4 5 . . . 1000
N(n, n) 1 3 13 63 321 1683 . . . ⇡ 10767

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:

For any al. A, we have max(n,m)  |A|  (n +m), thus:

N(n,m) ·max(n,m)  no. of steps of algo.  N(n,m) · (n +m)

Therefore, it has exponential running time: too slow!

16 / 34

A Dynamic Programming Algorithm

Dynamic Programming

• is a class of algorithms (like greedy, divide and conquer, . . . )

• applicable when solution can be constructed from solutions of
subproblems

• subproblem solutions re-used several times

• uses a matrix (”DP-table”) for storing subproblem solutions

17 / 34

Smaller subproblems

Crucial idea

If A is an optimal alignment, then B, the same alignment without the last
column, is also optimal.

Proof

By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes
of s and t, and construct an optimal alignment from that!

18 / 34

Smaller subproblems

Crucial idea

If A is an optimal alignment, then B, the same alignment without the last
column, is also optimal.

Proof

By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes
of s and t, and construct an optimal alignment from that!

18 / 34



The DP-table

Algorithm 2: Needleman-Wunsch algorithm for global alignment

• construct a DP-table D of size (n + 1)⇥ (m + 1) s.t.

D(i , j) = sim(s1 . . . si , t1 . . . tj)

(We will see in a moment how!)

• return D(n,m)

19 / 34

Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:

1. last column is
�
sn
�
�

2. last column is
�
sn
tm

�

3. last column is
��
tm

�

Recall that if A is optimal, then so is B = (A without last column)!

• in case 1, B is an opt. al. of s1...sn�1 and t1...tm
• in case 2, B is an opt. al. of s1...sn�1 and t1...tm�1

• in case 3, B is an opt. al. of s1...sn and t1...tm�1

20 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n,m), we need to know

• sim(s1...sn�1, t1...tm) = D(n � 1,m)
• sim(s1...sn�1, t1...tm�1) = D(n � 1,m � 1)
• sim(s1...sn, t1...tm�1) = D(n,m � 1)

and add the score of the last column!

D(n,m) = max

8
>>><

>>>:

D(n � 1,m) + gap

D(n � 1,m � 1) +

⇢
match if sn = tm

mismatch if sn 6= tm

D(n,m � 1) + gap

21 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n,m), we need to know

• sim(s1...sn�1, t1...tm) = D(n � 1,m)
• sim(s1...sn�1, t1...tm�1) = D(n � 1,m � 1)
• sim(s1...sn, t1...tm�1) = D(n,m � 1)

and add the score of the last column!

D(n,m) = max

8
>>><

>>>:

D(n � 1,m) + gap

D(n � 1,m � 1) +

⇢
match if sn = tm

mismatch if sn 6= tm

D(n,m � 1) + gap

21 / 34

Constructing solutions from smaller subproblems

Now we can compute all entries of D:

• D(i , 0) = i · gap for i � 0

• D(0, j) = j · gap for j � 0

• recursion (for i , j > 0):

D(i , j) = max

8
>>><

>>>:

D(i � 1, j) + gap

D(i � 1, j � 1) +

⇢
match if si = tj

mismatch if si 6= tj

D(i , j � 1) + gap

22 / 34

Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i , j) C A T

0 1 2 3

0 0 �1 �2 �3

A 1 �1 �1 1

C 2 �2

C 3 �3

T 4 �4

D(1, 1) = max{�1�1, 0�1,�1�1} = �1 D(1, 2) = max{�2�1,�1+2,�1�1} = 1

23 / 34



s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

D(i , j) C A T

0 1 2 3

0 0 �1 �2 �3

A 1 �1 �1 1 0

C 2 �2 1 0 0

C 3 �3 0 0 �1

T 4 �4 �1 �1 2

24 / 34

Needleman-Wunsch DP algorithm for global alignment

Variant which outputs sim(s, t) only.

Algorithm DP algorithm for global alignment

Input: strings s, t, with |s| = n, |t| = m; scoring function f

Output: value sim(s, t)
1. for j = 0 to m do D(0, j) j · g ;
2. for i = 1 to n do D(i , 0) i · g ;
3. for i = 1 to n do

4. for j = 1 to m do

5. D(i , j) max

8
><

>:

D(i � 1, j) + g

D(i � 1, j � 1) + f (si , tj)

D(i , j � 1) + g

6. return D(n,m);

25 / 34

Needleman-Wunsch DP algorithm for global alignment

• Algorithm first introduced by Needleman & Wunsch (1970).

• Di↵erent orders of computation are possible: necessary to compute
D(i � 1, j),D(i � 1, j � 1), and D(i , j � 1) before D(i , j)

• Time: O(n ·m)
(initialize first row and column in constant time, for the remaining n ·m cells, we

have 3 lookups and additions, so a constant number of operations)

• Space: O(n ·m)
(matrix of size (n + 1)(m + 1))

• for n = m, we get time and space O(n2), hence this is called a
quadratic (time and space) algorithm

• Space-saving variant exists (later)

26 / 34


