Number of alignments

List all alignments of s = AC and t = GA.

You should have got these 13 al's:

Number of alignments

Question

How many alignments are there in general for two strings s and t?

Observation

The number of alignments depends only on the length of s and t.

Def

Let N(n, m) = number of al's of two strings of length n and m.

We know:

- N(2,2) = 13
- N(1,1) = 3
- N(n,0) = 1, N(0,m) = 1
- we set: N(0,0) = 1 (empty alignment)

10/34

Number of alignments

N(n, m)	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	3				
2	1		13			
3	1					
4	1					
5	1					

Number of alignments

Look at the last column of the alignments:

12/34

Number of alignments

We have a recursive formula:

•
$$N(n,0) = N(0,m) = 1$$
 for $n, m \ge 0$

• and for n, m > 0:

$$N(n, m) = N(n-1, m) + N(n-1, m-1) + N(n, m-1)$$

Number of alignments

N(n, m)	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	3				
2	1		13			
3	1					
4	1					
5	1					

14/34 15/34

Number of alignments

N(n, m)	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	3	5	7	9	11
2	1	5	13	25	41	61
3	1	7	25	63	129	231
4	1	9	41	129	321	681
5	1	11	61	231	681	1683

Number of alignments

Let's look at the case n = m:

15/34 16/34

Number of alignments

Let's look at the case n = m:

In fact, it can be shown that N(n, n) grows exponentially.

Running time of exhaustive search:

For any al. \mathcal{A} , we have $\max(n,m) \leq |\mathcal{A}| \leq (n+m)$, thus:

$$N(n,m) \cdot \max(n,m) \le \text{no. of steps of algo.} \le N(n,m) \cdot (n+m)$$

Therefore, it has exponential running time: too slow!

A Dynamic Programming Algorithm

Dynamic Programming

- ullet is a class of algorithms (like greedy, divide and conquer, \dots)
- applicable when solution can be constructed from solutions of subproblems
- subproblem solutions re-used several times
- uses a matrix ("DP-table") for storing subproblem solutions

17/34

Smaller subproblems

Crucial idea

If ${\cal A}$ is an optimal alignment, then ${\cal B},$ the same alignment without the last column, is also optimal.

Proof

By contradiction (see board).

Smaller subproblems

Crucial idea

If ${\cal A}$ is an optimal alignment, then ${\cal B},$ the same alignment without the last column, is also optimal.

Proc

16/34

By contradiction (see board).

So we will compute the scores of optimal alignments of all pairs of prefixes of s and t, and construct an optimal alignment from that!

18/34

The DP-table

Algorithm 2: Needleman-Wunsch algorithm for global alignment

• construct a DP-table D of size $(n+1) \times (m+1)$ s.t.

$$D(i,j) = sim(s_1 \dots s_i, t_1 \dots t_i)$$

(We will see in a moment how!)

• return D(n, m)

Constructing solutions from smaller subproblems

Look at an alignment of s and t. There are 3 cases:

- 1. last column is $\binom{s_n}{-}$
- 2. last column is $\binom{s_n}{t_m}$
- 3. last column is $\binom{-}{t_m}$

Recall that if A is optimal, then so is B = (A without last column)!

- in case 1, ${\cal B}$ is an opt. al. of $\mathtt{s}_1...\mathtt{s}_{\mathtt{n}-1}$ and $\mathtt{t}_1...\mathtt{t}_{\mathtt{m}}$
- in case 2, ${\cal B}$ is an opt. al. of $\mathtt{s}_1...\mathtt{s}_{n-1}$ and $\mathtt{t}_1...\mathtt{t}_{m-1}$
- in case 3, ${\cal B}$ is an opt. al. of ${\tt s_1...s_n}$ and ${\tt t_1...t_{m-1}}$

19/34

20 / 34

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know

 $\begin{array}{lll} \bullet & sim(\mathbf{s}_1...\mathbf{s}_{n-1},\mathbf{t}_1...\mathbf{t}_m) & = D(n-1,m) \\ \bullet & sim(\mathbf{s}_1...\mathbf{s}_{n-1},\mathbf{t}_1...\mathbf{t}_{m-1}) & = D(n-1,m-1) \\ \bullet & sim(\mathbf{s}_1...\mathbf{s}_n,\mathbf{t}_1...\mathbf{t}_{m-1}) & = D(n,m-1) \end{array}$

and add the score of the last column!

Constructing solutions from smaller subproblems

So to compute sim(s, t) = D(n, m), we need to know

 $\begin{array}{ll} \bullet \; sim(s_1...s_{n-1},t_1...t_m) & = D(n-1,m) \\ \bullet \; sim(s_1...s_{n-1},t_1...t_{m-1}) & = D(n-1,m-1) \\ \bullet \; sim(s_1...s_n,t_1...t_{m-1}) & = D(n,m-1) \end{array}$

and add the score of the last column!

$$D(n,m) = \max \begin{cases} D(n-1,m) + gap \\ D(n-1,m-1) + \begin{cases} match & \text{if } s_n = t_m \\ mismatch & \text{if } s_n \neq t_m \end{cases} \\ D(n,m-1) + gap \end{cases}$$

21 / 34

21 / 34

Constructing solutions from smaller subproblems

Now we can compute all entries of D:

- $D(i,0) = i \cdot gap$ for $i \ge 0$
- $D(0,j) = j \cdot gap$ for $j \ge 0$
- recursion (for i, j > 0):

$$D(i,j) = \max \begin{cases} D(i-1,j) + \textit{gap} \\ D(i-1,j-1) + \begin{cases} \textit{match} & \text{if } s_i = t_j \\ \textit{mismatch} & \text{if } s_i \neq t_j \end{cases} \\ D(i,j-1) + \textit{gap} \end{cases}$$

Recall s = ACCT, t = CAT match: 2, mismatch: -1, gap: -1

$$\frac{\textit{D}(1,1)}{\textit{D}(1,1)} = \max\{-1-1,0-1,-1-1\} = -1 \quad \frac{\textit{D}(1,2)}{\textit{D}(1,2)} = \max\{-2-1,-1+2,-1-1\} = 1$$

22/34 23/34

$$s = \texttt{ACCT}, \ t = \texttt{CAT}$$

match: 2, mismatch: -1, gap: -1

D(i,j)		0	C 1	A 2	T 3
	0	0	-1	-2 1 0 0 -1	-3
A	1	-1	-1	1	0
С	2	-2	1	0	0
С	3	-3	0	0	-1
Т	4	-4	-1	-1	2

Needleman-Wunsch DP algorithm for global alignment

Variant which outputs sim(s, t) only.

Algorithm DP algorithm for global alignment Input: strings s, t, with |s| = n, |t| = m; scoring function f Output: value sim(s, t)1. for j = 0 to m do $D(0, j) \leftarrow j \cdot g$;

2. for i = 1 to n do $D(i, 0) \leftarrow i \cdot g$;

3. for i = 1 to n do

4. for j = 1 to m do

5.
$$D(i,j) \leftarrow \max \begin{cases} D(i-1,j) + g \\ D(i-1,j-1) + f(s_i,t_j) \\ D(i,j-1) + g \end{cases}$$

6. return D(n, m);

24/34 25/34

Needleman-Wunsch DP algorithm for global alignment

- Algorithm first introduced by Needleman & Wunsch (1970).
- Different orders of computation are possible: necessary to compute D(i-1,j), D(i-1,j-1), and D(i,j-1) before D(i,j)
- Time: $O(n \cdot m)$ (initialize first row and column in constant time, for the remaining $n \cdot m$ cells, we have 3 lookups and additions, so a constant number of operations)
- Space: $O(n \cdot m)$ (matrix of size (n+1)(m+1))
- for n=m, we get time and space $O(n^2)$, hence this is called a quadratic (time and space) algorithm
- Space-saving variant exists (later)

26 / 34