
Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II semester

Pairwise Alignment 1

Alignments

Alignment

• a way of visualizing similarities and di↵erences between two strings

• we want to find a good way of doing this

Ex: five di↵erent alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

Formal definition

An alignment A of s, t 2 ⌃⇤ is a matrix with two rows, entries from ⌃ [{�}
gap

, s.t.

1. deleting all gaps from the first row yields s

2. deleting all gaps from the second row yields t

3. no column consists of two gaps

2 / 34

Alignments

Alignment

• a way of visualizing similarities and di↵erences between two strings

• we want to find a good way of doing this

Ex: five di↵erent alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

Formal definition

An alignment A of s, t 2 ⌃⇤ is a matrix with two rows, entries from ⌃ [{�}
gap

, s.t.

1. deleting all gaps from the first row yields s

2. deleting all gaps from the second row yields t

3. no column consists of two gaps
2 / 34

Scoring alignments

scoring function

• score of a column: match (same char), mismatch (di↵. chars), gap
in general: scoring function f : ⌃ [{�}⇥ ⌃{�}! R

• score of A = sum of column scores

Ex.
match mismatch gap

2 �1 �1

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

1 2 -4 1 -7

N.B.: Remember that these values depend on the scoring function!

3 / 34

Scoring alignments

scoring function

• score of a column: match (same char), mismatch (di↵. chars), gap
in general: scoring function f : ⌃ [{�}⇥ ⌃{�}! R

• score of A = sum of column scores

Ex.
match mismatch gap

2 �1 �1

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

1 2 -4 1 -7

N.B.: Remember that these values depend on the scoring function!

3 / 34

Scoring alignments

So acc. to our scoring function, alignment 2 is the best (of the five)!

-ACCT ACCT ACCT ACC-T ---ACCT

CA--T -CAT CAT- --CAT CAT----

1 2 -4 1 -7

But is it best possible?

4 / 34

Optimal alignments

Def.

An optimal alignment of s and t is an alignment A with maximum score,
i.e. an alignment A s.t.

score(A) = max{score(A0) : A0 is an alignment of s and t}

Def.

Given s, t 2 ⌃⇤ and scoring function f , the similarity of s and t, is

sim(s, t) = score of an optimal alignment

= max{score(A) : A is an alignment of s and t}

5 / 34

Our computational problem: Global alignment

Problem variant 1

Input: Two strings s, t over alphabet ⌃, scoring function f .

Output: sim(s, t).

Problem variant 2

Input: Two strings s, t over alphabet ⌃, scoring function f .

Output: An optimal alignment of s and t.

N.B.: In variant 1, we want only a number, we are not interested in an optimal

alignment itself.

6 / 34

Our computational problem: Global alignment

For now, let’s concentrate on Variant 1 (i.e. only sim(s, t) is sought).

Global alignment

Input: Two strings s, t over alphabet ⌃, scoring function f .

Output: sim(s, t).

We will see two algorithms for this problem.

7 / 34

Exhaustive search

Algorithm 1: Exhaustive search

1. consider every possible alignment of s and t

2. for each of these, compute its score

3. output the maximum of the scores computed

8 / 34

Algorithm Exhaustive search for global alignment

Input: strings s, t, with |s| = n, |t| = m; scoring function f

Output: value sim(s, t)
1. int max = (n +m)g ; //g is the cost of a gap

2. for each alignment A of s and t (in some order)
3. do if score(A) > max

4. then max score(A);
5. return max ;

Note:

1. The variable max is needed for storing the highest score so far seen.

2. The initial value of max is the score of some alignment of s, t (which one?)

9 / 34

Number of alignments

List all alignments of s = AC and t = GA.

You should have got these 13 al’s:

-AC A-C --AC A--C -A-C

GA- GA- GA-- -GA- G-A-

AC A-C -AC

GA -GA G-A

AC- AC- AC-- -AC- A-C-

-GA G-A --GA G--A -G-A

10 / 34

