
Bioinformatics Algorithms
(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics
academic year 2018/19, II. semester

Pairwise Alignment in Practice

Visualization with dotplots

2 / 19

Dot plots

The simplest way of visualizing similarities between two sequences is a
dot plot (or dot matrix):

• matrix of size |s| ⇥ |t|;

• put a dot in position (i , j)
i↵ si = tj .

• can also be used to show
self-similarity (repeats)

• Advantage: easy to
compute and easy to
understand.

• Drawback: not always
easy to interpret, esp.
with small alphabets (too
many dots!)

A L I G N M E N T O F P A I R S O F S E Q U E N C E S ■ 61

sequences is compared at the same time, and a dot is printed on the page only if a certain
minimal number of matches occur. The window starts at the positions in A and B to be
compared and includes characters in a diagonal line going down and to the right, compar-
ing each pair in turn, as in making an alignment. A larger window size is generally used for
DNA sequences than for protein sequences because the number of random matches is
much greater due to the use of only four DNA symbols as compared to 20 amino acid sym-
bols. A typical window size for DNA sequences is 15 and a suitable match requirement in
this window is 10. For protein sequences, the matrix is often not filtered, but a window size
of 2 or 3 and a match requirement of 2 will highlight matching regions. If two proteins are
expected to be related but to have long regions of dissimilar sequence with only a small
proportion of identities, such as similar active sites, a large window, e.g., 20, and small
stringency, e.g., 5, should be useful for seeing any similarity. Identification of sequence
alignments by the dot matrix method can be aided by performing a count of dots in all pos-
sible diagonal lines through the matrix to determine statistically which diagonals have the
most matches, and by comparing these match scores with the results of random sequence
comparisons (Gibbs and McIntyre 1970; Argos 1987).

An example of a dot matrix analysis between the DNA sequences that encode the
Escherichia coli phage ! cI and phage P22 c2 repressor proteins is shown in Figure 3.4. With
a window of 1 and stringency of 1, there is so much noise that no diagonals can be seen,
but, as shown in the figure, with a window of 11 and a stringency of 7, diagonals appear in
the lower right. The analysis reveals that there are regions of similarity in the 3" ends of the
coding regions, which, in turn, suggests similarity in the carboxy-terminal domains of the

Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage ! cI (horizontal sequence)
and phage P22 c2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

source: D. Mount: Bioinformatics

3 / 19

Dot plots

The simplest way of visualizing similarities between two sequences is a
dot plot (or dot matrix):

• matrix of size |s| ⇥ |t|;

• put a dot in position (i , j)
i↵ si = tj .

• can also be used to show
self-similarity (repeats)

• Advantage: easy to
compute and easy to
understand.

• Drawback: not always
easy to interpret, esp.
with small alphabets (too
many dots!)

A L I G N M E N T O F P A I R S O F S E Q U E N C E S ■ 61

sequences is compared at the same time, and a dot is printed on the page only if a certain
minimal number of matches occur. The window starts at the positions in A and B to be
compared and includes characters in a diagonal line going down and to the right, compar-
ing each pair in turn, as in making an alignment. A larger window size is generally used for
DNA sequences than for protein sequences because the number of random matches is
much greater due to the use of only four DNA symbols as compared to 20 amino acid sym-
bols. A typical window size for DNA sequences is 15 and a suitable match requirement in
this window is 10. For protein sequences, the matrix is often not filtered, but a window size
of 2 or 3 and a match requirement of 2 will highlight matching regions. If two proteins are
expected to be related but to have long regions of dissimilar sequence with only a small
proportion of identities, such as similar active sites, a large window, e.g., 20, and small
stringency, e.g., 5, should be useful for seeing any similarity. Identification of sequence
alignments by the dot matrix method can be aided by performing a count of dots in all pos-
sible diagonal lines through the matrix to determine statistically which diagonals have the
most matches, and by comparing these match scores with the results of random sequence
comparisons (Gibbs and McIntyre 1970; Argos 1987).

An example of a dot matrix analysis between the DNA sequences that encode the
Escherichia coli phage ! cI and phage P22 c2 repressor proteins is shown in Figure 3.4. With
a window of 1 and stringency of 1, there is so much noise that no diagonals can be seen,
but, as shown in the figure, with a window of 11 and a stringency of 7, diagonals appear in
the lower right. The analysis reveals that there are regions of similarity in the 3" ends of the
coding regions, which, in turn, suggests similarity in the carboxy-terminal domains of the

Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage ! cI (horizontal sequence)
and phage P22 c2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

source: D. Mount: Bioinformatics

3 / 19

Dot plots
One solution is to restrict dots to positions which are part of a longer
stretch of exact matches:

• choose parameter q

• if si · · · si+q�1 =
tj · · · tj+q�1, then put a
dot in positions
(i , j), (i+1, j+1), . . . , (i+
q � 1, j + q � 1).

• on the right: unfiltered
dot plot for two strings
s, t, and with filters
q = 2, 3.

6 Pairwise Alignment in Practice

similarities. Therefore the dotplot is usually filtered, e.g. by removing all dots that are
not part of a consecutive match of length � q, where q is a user-adjustable parameter (see
Figure 6.1, lower part).

F L U O R E S C E N C E I S E S S E N T I A L

R

E

M

I

N

I

S

C

E

N

C

E

� � � � � �
� �� �� �� � � �� �� � � � �� �� �� � � � �

F L U O R E S C E N C E I S E S S E N T I A L

R

E

M

I

N

I

S

C

E

N

C

E

� � � �
� �� � �� �

� �
� � �

� unfiltered filtered (q = 2) filtered (q = 3)

Figure 6.1: Upper part: Unfiltered dot plot. Lower part: Filtered dot plots. Here the filter
keeps only those positions (i, j), that are part of a common substring of length � q.

6.2 Fundamentals of Rapid Database Search Methods

In practice, pairwise alignment algorithms are used for two related, but still conceptually
di�erent purposes, and it is important to keep the di�erent goals in mind.

1. True pairwise alignment: Given sequences x, y 2 �� that we already know or suspect
to be similar, report all similar regions and show the corresponding (even suboptimal)
alignments.

2. Large-scale database searching: Given a query x 2 �� and a family (database) Y of
subjects, find out (quickly) which y 2 Y share at least one su�ciently similar region
with x and report those y along with the similarity score (e.g. the alignment score).
The alignment itself is of little interest in this case; suboptimal alignments are of even
less interest.

56

source: Lecture Notes ”Seq. Analysis”, Bielefeld Univ.
4 / 19

• choose parameters q, r (q
windowsize, r stringency)

• if there are at least r
matches within a window of
size q, then put a dot in
each of these positions, i.e.
if the Hamming distance of
si · · · si+q�1 and tj · · · tj+q�1

is at least r , then put a dot
in positions (i , j), (i + 1, j +
1), . . . , (i + q � 1, j + q � 1).

• on the right: Human LDL
receptor against itself; A.
window=1, str.=1, B.
window=23, str.=7.

A L I G N M E N T O F P A I R S O F S E Q U E N C E S ■ 63

Figure 3.6. Dot matrix analysis of the human LDL receptor against itself using DNA Strider, vers. 1.3, on a Macintosh com-
puter. (A) Window 1, Stringency 1. There is a diagonal line from upper left to lower right due to the fact that the same
sequence is being compared to itself. The rest of the graph is symmetrical about this line. Other (quite hard to see) lines on
either side of this diagonal are also present. These lines indicate repeated sequences perhaps 50 or so long. Patches of high-
density dots, e.g., at the position corresponding to position 800 in both sequences representing short repeats of the same
amino acid, are also seen. (B) Window 23, Stringency 7. The occurrence of longer repeats may be found by using this sliding
window. In this example, a dot is placed on the graph at a given position only if 7/23 of the residues are the same. These choic-
es are arbitrary and several combinations may need to be tried. Many repeats are seen in the first 300 positions. A pattern of
approximate length 20 and at position 30 is repeated at least six times at positions 70, 100, 140, 180, 230, and 270. Two longer,
overlapping repeats of length 70 are also found in this same region starting at positions 70 and 100, and repeated at position
200. Since few of these diagonals remain in new analyses at 11/23 (stringency/window) and all disappear at 15/23, they are not
repeats of exactly the same sequence but they do represent an average of about 7/23 matches with no deletions or insertions.
The information from the above dot matrix may be used as a basis for listing the actual amino acid repeats themselves by one
of the other methods for sequence alignment described below.

source: D. Mount: Bioinformatics
5 / 19

Database search with BLAST

6 / 19

Database search

• Until now: compare two sequences
• how similar/di↵erent are they? (score/value)
• where are the similarities/di↵erences? (alignment)

• Now: compare one sequence to a database (i.e. to many sequences)

7 / 19

Database search

Goal:
Identifying sequences in the DB which have high local similarity with the
query.

• We know how to do this: Smith-Waterman DP-algorithm.

• But: too slow!

8 / 19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

• time of exact solution (Smith-Waterman): O(r · n
2)

Example

• UniProt/SwissProt (protein database): 548 454 sequences,
195 409 447 aa’s (avg. length 350 aa’s) version 29/04/15

• NCBI Genbank (nucleotide database): 182 188 746 sequences,
189 739 230 107 nucleotides (avg. length 1041 nucl.) April 2015, no WGS

So we would get something like 350 · 350 · 548454 = 67 185 615 000 =
about 67 billion (67 · 109) steps, which takes 18 hours on a computer that
performs 1 million operations per second (for UniProt), and
197 434 482 454 026 (⇡ 1.9 · 1012), about 6 years, for Genbank. And still
about 1 hour on a computer performing 1 billion operations per second.

And this is for one query only!

9 / 19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

• time of exact solution (Smith-Waterman): O(r · n
2)

Example

• UniProt/SwissProt (protein database): 548 454 sequences,
195 409 447 aa’s (avg. length 350 aa’s) version 29/04/15

• NCBI Genbank (nucleotide database): 182 188 746 sequences,
189 739 230 107 nucleotides (avg. length 1041 nucl.) April 2015, no WGS

So we would get something like 350 · 350 · 548454 = 67 185 615 000 =
about 67 billion (67 · 109) steps, which takes 18 hours on a computer that
performs 1 million operations per second (for UniProt), and
197 434 482 454 026 (⇡ 1.9 · 1012), about 6 years, for Genbank. And still
about 1 hour on a computer performing 1 billion operations per second.

And this is for one query only!

9 / 19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

• time of exact solution (Smith-Waterman): O(r · n
2)

Example

• UniProt/SwissProt (protein database): 548 454 sequences,
195 409 447 aa’s (avg. length 350 aa’s) version 29/04/15

• NCBI Genbank (nucleotide database): 182 188 746 sequences,
189 739 230 107 nucleotides (avg. length 1041 nucl.) April 2015, no WGS

So we would get something like 350 · 350 · 548454 = 67 185 615 000 =
about 67 billion (67 · 109) steps, which takes 18 hours on a computer that
performs 1 million operations per second (for UniProt), and
197 434 482 454 026 (⇡ 1.9 · 1012), about 6 years, for Genbank. And still
about 1 hour on a computer performing 1 billion operations per second.

And this is for one query only!
9 / 19

BLAST: Basic Local Alignment Search Tool

• Altschul et al. 1990, 1997 (among the most highly cited papers in
bioinformatics)

• looks for sequences in a database with high local similarity to query

• heuristic algorithm

• solid mathematical foundations (Karlin-Altschul statistics)

• extremely successful, now the database search tool (“to blast a
sequence against a database”)

• NCBI1 Blast at:
http://blast.ncbi.nlm.nih.gov/Blast.cgi

1NCBI = National Center for Biotechnology Information
10 / 19

Basic idea

Basic idea
If there is a good local alignment between two sequences, then this local
alignment is likely to contain a pair of short substrings with high score
when aligned without gaps.

Basic steps of BLAST

1. create list of high-scoring words with query

2. scan DB for these words (called seeds)

3. extend seeds in both directions to form good gapless local alignment
(locally maximal segment pairs = HSPs)

11 / 19

Parameters

The original BLAST uses the following parameters:

• w : word size (length of high-scoring words)
default for DNA: w = 11, for protein: w = 3.

• T : threshold for high-scoring words

• d : absolute drop from highest scoring extension so far, or
↵: relative drop from highest scoring extension so far

• S : threshold for retaining HSPs

Underlying theory of MSPs (maximal segment pairs) allows to estimate
the highest MSP score S at which chance similarities are probable. HSPs
are an approximation of MSPs; BLAST retains only those HSPs from the
last step whose score is above this threshold S .

12 / 19

Step 1: create list of high-scoring words

Let t be the query sequence.
A word v of length w is called high-scoring if there exists a substring u of
t s.t. score(u, v) � T , where score(u, v) =

Pw
i=1 f (ui , vi), the score of a

gapless alignment of u with v . In other words, high-scoring words are the
elements of the set

H =

|t|�w+1[

i=1

N (ti · · · ti+w�1),

where N (u) = {v : score(u, v) � T} is the T -neighborhood of the word
u.
Note that not every w -substring of t is necessarily element of H (its score
with itself could be below T). Also, a word v could be high-scoring thanks
to its closeness to two di↵erent w -substrings of t.

13 / 19

Example

• w = 3,T = 22, using the PAM250 scoring matrix.

• t = . . . FRNFKCVDNYAWC . . .

• Step 1: Generate high-scoring words. For example, score(FKC,FKC)
= 26, score(FKC,FRC) = 24, score(FKC,FNC) = 22, score(FKC,YKC)
= 24, score(FKC,YRC) = 22. . .— these are all high-scoring w.r.t. the
substring FKC of t. Others are high-scoring w.r.t. another substring of
t, e.g. FWC is high-scoring because score(FWC,AWC) = 26 (but not
w.r.t. FKC, since score(FWC,FKC) = 18 < 21).

• So for each high-scoring word v 2 H, we need a list of positions i in t

s.t. score(v , ti · · · ti+w�1) � T .

• Some high-scoring words are then: FKC,FRC,FNC,YKC,YRC, . . . (w.r.t.
FKC), AWC,FWC,DWC,LWC, . . . (wr.t. AWC), . . .

14 / 19

Step 2: Find occurrences of high-scoring words in DB
sequences

Step 2. For each high-scoring word v , find all occurrences of v in the DB
(i.e. in some sequence s

k in the DB). These are called seeds.

Example (cont.)

Let v = FRC, which is high-scoring w.r.t. FKC (substring of t). Let the
following be a sequence from the DB:

s = . . . RNKDQKFRCAVDYAGM . . .

N.B.: This can be done e�ciently using dedicated data structures for strings

(e.g. generelized su�x array); this is beyond the scope of this course.

15 / 19

Step 3: Try to extend seeds

Step 3. For each of these seeds, try to extend to an HSP: Let sk have an
occurrence of a high-scoring word v (w.r.t. u = ti · · · ti+w�1) in position j ,
then we already know that

✓
ti ti+1 . . . ti+w�1

skj s
k
j+1 . . . skj+w�1

◆

is a gapless alignment with score � T . We try to extend it in both
directions to get a good HSP/MSP.

16 / 19

Example (cont.)

t = . . .FRNFKCVDNYAWC . . .

s = . . . RNKDQKFRCAVDYAGM . . .

We extend this alignment to both sides character by character, to get a
good gapless local alignment. When do we stop? We could stop whenever
we find a negative score (here at f (V, A) = �2); however, then we could
miss a good longer local alignment. So one possibility is to set a maximum
di↵erence d to current best score: extend until score < X � d , where X =
highest-score-seen-so-far. Another is to set a relative di↵erence ↵: we
extend until we drop below (1 � ↵)X . E.g. for ↵ = 0.1 we get:

✓
RNFKCVDNYA

QKFRCAVDYA

◆

with score 38. This local alignment is now retained i↵ 38 > S .
17 / 19

BLAST2

Some of the main changes in BLAST2 (Altschul el al. 1997)

• start with two seeds instead of one, not too far apart

• gapped alignments

• extension of statistical theory to HSPs (high-scoring segment pairs)

Note: All versions of BLAST include many complex pre- and
postprocessing steps, optimizations, . . . These are explained in the cited
papers, and followup publications. Here we only looked at the basic ideas
of the algorithm.

18 / 19

The NCBI BLAST website

• Di↵erent versions of BLAST, depending on the task (nucl-nucl:
blastn, megablast, . . . , prot-prot: blastp, psi-blast, nucl-prot: blastx,
prot-nucl: tblastn, . . .)

• Di↵erent databases (nucl vs. prot, di↵erent organisms, di↵erent types
of db, di↵erent levels of assembly, . . .)

• Very good explanations and help pages!

19 / 19

