Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2018/19, Il. semester

Pairwise Alignment in Practice

Visualization with dotplots

2/19

Dot plots

The simplest way of visualizing similarities between two sequences is a
dot plot (or dot matrix):

® matrix of size |s| x |t[; 100 200

® put a dot in position (1,)
iff s; = t;.
® can also be used to show

self-similarity (repeats) ”

200

LJNLIE L I L L L B B

Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage A I (horizontal sequence)
and phage P22 c2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

source: D. Mount: Bioinformatics

3/19

Dot plots

The simplest way of visualizing similarities between two sequences is a
dot plot (or dot matrix):

® matrix of size |s| X |¢|; 100 200

® put a dot in position (i,)
iff s; = t;.

® can also be used to show

self-similarity (repeats) m
® Advantage: easy to
compute and easy to
200

understand.

. B e
® Drawback: not always f T
Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage \ I (horizontal sequence)

easy to interpret' esp. an: phage P22 cZ(ve‘:txcglsequmm) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

with small alphabets (too

many dots!)

source: D. Mount: Bioinformatics

3/19

Dot plots

One solution is to restrict dots to positions which are part of a longer
stretch of exact matches:

FLUORESCENCEISESSENTTIATL

R .

E . . .

M

1 . .
® choose parameter g X QNS au
e ifsi---s; = o : DL

] i+q—1 — ; EEOEEOE] i
tj---tiyg—1, then put a x ENDE ;
E . . .

dot in positions
(1,0), (i +1,j4+1), ..., (i+ P Lo
g—1,j+qg—1).

® on the right: unfiltered
dot plot for two strings

|
=

w

=

Z

. =
®n

=

n

n

=

Z

=)

>

EQZEQ®~2—~28%3

s, t, and with filters LI
q=23. RmE
o unfiltered W filtered (g =2) W fitered (9=3)

source: Lecture Notes "Seq. Analysis”, Bielefeld Univ. 19
4/

/

® choose parameters q, r (q
windowsize, r stringency)

® if there are at least r
matches within a window of
size g, then put a dot in
each of these positions, i.e.
if the Hamming distance of
Si++Sivg—1 and ;- tjpq1

is at least r, then put a dot N N . L
in positions (7,), (i +1,j + ~\\\\\\\E -
. . ARRRARNY
,...,(i+qg—-1,j+qg-1). I ot
® on the right: Human LDL m:- NN I
receptor against itself; A. . NN

window=1, str.=1, B.
window=23, str.=7.

source: D. Mount: Bioinformatics 5/19

Database search with BLAST

Database search

® Until now: compare two sequences

® how similar/different are they? (score/value)
® where are the similarities/differences? (alignment)

7/19

Database search

® Until now: compare two sequences
® how similar/different are they? (score/value)
® where are the similarities/differences? (alignment)

e Now: compare one sequence to a database (i.e. to many sequences)

7/19

Database search

Goal:
Identifying sequences in the DB which have high local similarity with the

query.

e We know how to do this: Smith-Waterman DP-algorithm.

8/19

Database search

Goal:
Identifying sequences in the DB which have high local similarity with the

query.

e We know how to do this: Smith-Waterman DP-algorithm.

® But: too slow!

8/19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

® time of exact solution (Smith-Waterman):

9/19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

® time of exact solution (Smith-Waterman): O(r - n?)

9/19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

® time of exact solution (Smith-Waterman): O(r - n?)
Example

® UniProt/SwissProt (protein database): 548 454 sequences,
195409 447 aa's (avg. length 350 aa's) version 29/04/15

e NCBI Genbank (nucleotide database): 182188 746 sequences,
189739230107 nucleotides (avg. length 1041 nucl.) April 2015, no WGS

9/19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

® time of exact solution (Smith-Waterman): O(r - n?)

Example

® UniProt/SwissProt (protein database): 548 454 sequences,
195409 447 aa's (avg. length 350 aa's) version 29/04/15

e NCBI Genbank (nucleotide database): 182188 746 sequences,
189739230107 nucleotides (avg. length 1041 nucl.) April 2015, no WGS

So we would get something like 350 - 350 - 548454 = 67 185615000 =
about 67 billion (67 - 10%) steps, which takes 18 hours on a computer that
performs 1 million operations per second (for UniProt), and

197 434 482454 026 (=~ 1.9 - 10'2), about 6 years, for Genbank. And still
about 1 hour on a computer performing 1 billion operations per second.

9/19

Say all sequences have length n (query t and all DB seq’s),
and there are r sequences in the DB.

® time of exact solution (Smith-Waterman): O(r - n?)

Example

® UniProt/SwissProt (protein database): 548 454 sequences,
195409 447 aa's (avg. length 350 aa's) version 29/04/15

e NCBI Genbank (nucleotide database): 182188 746 sequences,
189739230107 nucleotides (avg. length 1041 nucl.) April 2015, no WGS

So we would get something like 350 - 350 - 548454 = 67 185615000 =
about 67 billion (67 - 10%) steps, which takes 18 hours on a computer that
performs 1 million operations per second (for UniProt), and

197 434 482454 026 (=~ 1.9 - 10'2), about 6 years, for Genbank. And still
about 1 hour on a computer performing 1 billion operations per second.

And this is for one query only!
9/19

BLAST: Basic Local Alignment Search Tool

e Altschul et al. 1990, 1997 (among the most highly cited papers in
bioinformatics)

® |ooks for sequences in a database with high local similarity to query
® heuristic algorithm
e solid mathematical foundations (Karlin-Altschul statistics)

® extremely successful, now the database search tool (“to blast a
sequence against a database”)

* NCBI! Blast at:
http://blast.ncbi.nlm.nih.gov/Blast.cgi

!NCBI = National Center for Biotechnology Information
10/19

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Basic idea

Basic idea
If there is a good local alignment between two sequences, then this local

alignment is likely to contain a pair of short substrings with high score
when aligned without gaps.

11/19

Basic idea

Basic idea
If there is a good local alignment between two sequences, then this local

alignment is likely to contain a pair of short substrings with high score
when aligned without gaps.

Basic steps of BLAST

1. create list of high-scoring words with query

2. scan DB for these words (called seeds)
3. extend seeds in both directions to form good gapless local alignment
(locally maximal segment pairs = HSPs)

11/19

Parameters

The original BLAST uses the following parameters:

e w: word size (length of high-scoring words)
default for DNA: w = 11, for protein: w = 3.

e T: threshold for high-scoring words

® d: absolute drop from highest scoring extension so far, or
«: relative drop from highest scoring extension so far

® S: threshold for retaining HSPs

Underlying theory of MSPs (maximal segment pairs) allows to estimate
the highest MSP score S at which chance similarities are probable. HSPs
are an approximation of MSPs; BLAST retains only those HSPs from the

last step whose score is above this threshold S.

12/19

Step 1: create list of high-scoring words

Let t be the query sequence.

A word v of length w is called high-scoring if there exists a substring u of
t s.t. score(u,v) > T, where score(u,v) = > ; f(uj, v;), the score of a
gapless alignment of u with v. In other words, high-scoring words are the
elements of the set

[t|—w+1
H=|J Nt tirw),
i=1
where N'(u) = {v : score(u,v) > T} is the T-neighborhood of the word
u.
Note that not every w-substring of t is necessarily element of H (its score
with itself could be below T). Also, a word v could be high-scoring thanks
to its closeness to two different w-substrings of t.

13/19

Example

w =3, T = 22, using the PAM250 scoring matrix.

t = ...FRNFKCVDNYAWC. ..

Step 1: Generate high-scoring words. For example, score(FKC,FKC)
= 26, score(FKC,FRC) = 24, score(FKC,FNC) = 22, score(FKC, YKC)
= 24, score(FKC,YRC) = 22...— these are all high-scoring w.r.t. the
substring FKC of t. Others are high-scoring w.r.t. another substring of
t, e.g. FWC is high-scoring because score(FWC,AWC) = 26 (but not
w.r.t. FKC, since score(FWC,FKC) = 18 < 21).

So for each high-scoring word v € H, we need a list of positions / in t
s.t. score(v, tj-- - titw—_1) > T.

Some high-scoring words are then: FKC,FRC,FNC,YKC,YRC, ... (w.r.t.
FKC), AWC,FWC,DWC,LWC, ... (wr.t. AWC), ...

14/19

Step 2: Find occurrences of high-scoring words in DB
sequences

Step 2. For each high-scoring word v, find all occurrences of v in the DB
(i.e. in some sequence s in the DB). These are called seeds.

Example (cont.)

Let v = FRC, which is high-scoring w.r.t. FKC (substring of t). Let the
following be a sequence from the DB:

s = ...RNKDQKFRCAVDYAGM. ..

N.B.: This can be done efficiently using dedicated data structures for strings
(e.g. generelized suffix array); this is beyond the scope of this course.

15/19

Step 3: Try to extend seeds

Step 3. For each of these seeds, try to extend to an HSP: Let sk have an
occurrence of a high-scoring word v (w.r.t. u=t;--- tj;,—_1) in position j,

then we already know that
<titi+1 e ti+w—1>
k ok k
5SSl S w1

is a gapless alignment with score > T. We try to extend it in both
directions to get a good HSP/MSP.

16 /19

Example (cont.)

t = ...FRNFKCVDNYAWC. ..
s = ...RNKDQKFRCAVDYAGM. ..

We extend this alignment to both sides character by character, to get a
good gapless local alignment. When do we stop? We could stop whenever
we find a negative score (here at f(V,A) = —2); however, then we could
miss a good longer local alignment. So one possibility is to set a maximum
difference d to current best score: extend until score < X — d, where X =
highest-score-seen-so-far. Another is to set a relative difference a: we
extend until we drop below (1 — «)X. E.g. for « = 0.1 we get:

RNFKCVDNYA
QKFRCAVDYA

with score 38. This local alignment is now retained iff 38 > S.

17/19

BLAST?2

Some of the main changes in BLAST2 (Altschul el al. 1997)

® start with two seeds instead of one, not too far apart
® gapped alignments

e extension of statistical theory to HSPs (high-scoring segment pairs)

Note: All versions of BLAST include many complex pre- and
postprocessing steps, optimizations, ... These are explained in the cited
papers, and followup publications. Here we only looked at the basic ideas
of the algorithm.

18/19

The NCBI BLAST website

e Different versions of BLAST, depending on the task (nucl-nucl:
blastn, megablast, ..., prot-prot: blastp, psi-blast, nucl-prot: blastx,
prot-nucl: tblastn, ...)

e Different databases (nucl vs. prot, different organisms, different types
of db, different levels of assembly, ...)

® Very good explanations and help pages!

19/19

