Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2018/19, II semester

Organisation

- Title of course: Bioinformatics Algorithms (Fundamental Algorithms, module 2)
 Master of Medical Bioinformatics (MB)
 6 CFU of a total of 12 CFU
- This course doubles as (*mutuato*) Algorithms for Computational Biology in the Master in Medical and Molecular Biotechnology (MMB) 6 CFU

Organisation (cont.)

- course times: Tue 12:30 14:30 (aula L), Thu 11:30 14:30 (aula A)
- email: zsuzsanna.liptak@univr.it Please include the course title and your name in the email
- office: CV 2, 1st floor, room 1.79
- student hours: Wed 10-12 (9:30-11:30?) and by appointment
- webpage of course: http://profs.scienze.univr.it/~liptak/FundBA/

Organisation (cont.)

- exam: written and oral, admitted to oral only if you pass the written test
- different exams for students of MB and MMB
- There will be two extra lectures for students of MMB on computational complexity
- takehome exercises during term: will be discussed but not marked
- for Fundamental Algorithms final grade is 50% mod.1, 50% mod.2

Organisation (cont.)

- exam: written and oral, admitted to oral only if you pass the written test
- different exams for students of MB and MMB
- There will be two extra lectures for students of MMB on computational complexity
- takehome exercises during term: will be discussed but not marked
- for Fundamental Algorithms final grade is 50% mod.1, 50% mod.2

Questions?

- Pairwise sequence analysis
 - Pairwise sequence alignment (global, local, other variants)
 - Pairwise alignment in practice: BLAST, Scoring matrices
 - String distances (edit distance, LCS distance, q-gram distance)

- Pairwise sequence analysis
 - Pairwise sequence alignment (global, local, other variants)
 - Pairwise alignment in practice: BLAST, Scoring matrices
 - String distances (edit distance, LCS distance, *q*-gram distance)
- Sequence assembly algorithms
 - Sanger shotgun sequencing: SCS (recap)
 - Sequencing with de Bruijn graphs

- Pairwise sequence analysis
 - Pairwise sequence alignment (global, local, other variants)
 - Pairwise alignment in practice: BLAST, Scoring matrices
 - String distances (edit distance, LCS distance, *q*-gram distance)
- Sequence assembly algorithms
 - Sanger shotgun sequencing: SCS (recap)
 - Sequencing with de Bruijn graphs
- Multiple sequence alignment
 - DP-algorithm, SP-score
 - Heuristic and approximation algorithms

- Pairwise sequence analysis
 - Pairwise sequence alignment (global, local, other variants)
 - Pairwise alignment in practice: BLAST, Scoring matrices
 - String distances (edit distance, LCS distance, *q*-gram distance)
- Sequence assembly algorithms
 - Sanger shotgun sequencing: SCS (recap)
 - Sequencing with de Bruijn graphs
- Multiple sequence alignment
 - DP-algorithm, SP-score
 - Heuristic and approximation algorithms
- Basics of Phylogenetics
 - distance-based data: UPGMA, Neighbor Joining
 - character-based data: Perfect Phylogeny, Small and Large Parsimony

- Pairwise sequence analysis
 - Pairwise sequence alignment (global, local, other variants)
 - Pairwise alignment in practice: BLAST, Scoring matrices
 - String distances (edit distance, LCS distance, *q*-gram distance)
- Sequence assembly algorithms
 - Sanger shotgun sequencing: SCS (recap)
 - Sequencing with de Bruijn graphs
- Multiple sequence alignment
 - DP-algorithm, SP-score
 - Heuristic and approximation algorithms
- Basics of Phylogenetics
 - distance-based data: UPGMA, Neighbor Joining
 - character-based data: Perfect Phylogeny, Small and Large Parsimony
- Introduction to string data structures
 - Basics of Suffix Trees and Suffix Arrays
 - Some applications

Books

- Enno Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag (2013)
 —recent, detailed, covers some but not all topics of this course, 3 copies in library
- H.-J. Böckenhauer, D. Bongartz: Algorithmic Aspects of Bioinformatics (2010)
- V. Mäkinen, D. Belazzougui, F. Cunial, A.I. Tomescu: Genome-Scale Algorithm Design. Cambridge University Press (2015)—very recent, advanced
- Neil C. Jones and Pavel A. Pevzner: An Introduction to Bioinformatics Algorithms (2004)—3 copies in library
- David M. Mount: Bioinformatics: Sequence and Genome Analysis (2004)—biologically oriented book, detailed, not always sufficiently algorithmic
- João Setubal, João Meidanis: Introduction to Computational Molecular Biology (1997)—my old favorite but a bit dated, 1 copy in library
- Dan Gusfield: Algorithms on Strings, Trees, and Sequences (1997)—the bible of string algorithms, a bit dated now
- Joseph Felsenstein: Inferring Phylogenies (2004)—important book on phylogenetics, very understandably written
- Cormen, Leiserson, Rivest (& Stein): Introduction to Algorithms (different editions, 1990-onwards)—the bible of algorithms, a must-have for anyone interested in algorithms (buy second hand, old editions are also fine)