Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Liptak

Masters in Medical Bioinformatics
academic year 2018/19, Il. semester

Fragment Assembly with de Bruijn Graphs!

!These slides mainly based on Compeau, Pevzner, Tesler: How to apply de Bruijn
graphs to genome assembly, Nature Biotechnology 29 (11).

Sequence assembly

Molecule (many identical copies) broken up into fragments.

many
identical
copies

— = =

Overlap graph approach

(Recall from the first module of this course)

Previous approach (Sanger sequencing technology)

Shortest common superstring = a heaviest path in the overlap graph of
F = {TACC, ACTAC, CGGACT, ACGGA} = a heaviest Hamiltonian path.

4
-
a=TACC @ ® c=CGGACT
1

4
-+
b=ACTAC ® > ® d=ACGGA
2

Sequencing of a genome

From the DNA molecules (input of experiment) we want to get the
sequence of the nucleotides (desired output).

‘:> .. .AACAGTACCATGCTAGGTCAATCGA. . .
.. .TTGTCATGGTACGATCCAGTTAGCT. . .

Sequence assembly

(also called Fragment Assembly Problem)

Input:
Many short sequences/strings (the fragments).

Goal:

Reconstruct original string (the target sequence).

Sanger sequencing vs. short read sequencing (NGS)

NGS
Next generation sequencing technologies (lllumina, 454, SOLID, ...)
generate a much larger number of reads

® high-throughput: fast acquisition, low cost
® lower quality (more errors)

® short reads (Illumina: typically 60-100 bp)
® much higher number of reads

While overlap graph approach (with many additional details and
modifications!) worked for Sanger type sequences, it no longer works for
NGS data. Reason: Input too large, no efficient algorithms exist (efficient
= polynomial time in input size), since SCS (and all other problem
variants) are NP-hard.

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Euler cycle/path vs. Hamiltonian cycle/path
® Hamiltonian cycle/path: uses every vertex exactly once

® Euler cycle/path: uses every edge exactly once

Fact
Finding an Euler cycle (or Euler path) can be solved in polynomial time.

Recall: Eulerian cycles and the bridges of Konigsberg

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Euler cycle/path vs. Hamiltonian cycle/path

® Hamiltonian cycle/path: uses every vertex exactly once
e Euler cycle/path: uses every edge exactly once

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in a de Bruijn graph (instead of heaviest Hamiltonian
cycle/path in an overlap graph).

Euler cycle/path vs. Hamiltonian cycle/path

® Hamiltonian cycle/path: uses every vertex exactly once
® Euler cycle/path: uses every edge exactly once

Fact
Finding an Euler cycle (or Euler path) can be solved in polynomial time.

But:
We have to find a way of modelling our problem in the right way.

Recall Euler cycle/path

Theorem

A directed graph has an Euler cycle (=Euler tour) if and only if it is
connected and for all vertices v: indeg(v) = outdeg(v) (i.e. all vertices are
balanced). Such a graph is called Eulerian.

Theorem
A directed graph has an Euler path if and only if
® it is Eulerian, or
® it is connected, there are two vertices s, t, for which
indeg(s) = outdeg(s) — 1 and indeg(t) = outdeg(t) + 1, and all
other vertices are balanced.

Recall Euler cycle/path

Theorem
If G is Eulerian, then an Euler cycle can be found in time O(|E|).

Proof
Use Hierholzer's algorithm:

® Start from any vertex v, go along so far untraversed edges. This is
always possible, because every vertex is balanced.

® Eventually we get back to v (why?). Now if there are still untraversed
edges, then there must be a vertex u in the cycle so far visited which
has untraversed incident edges, since the graph is connected.

® Create a new cycle starting from u, unite the new cycle with the old
one.

® Until no untraversed edges are left.

Note:
Similar for Eulerian path, start from s, will end up in t.

10/27

De Bruijn graphs

1001 0110

The numbers give the order of the edges in an Eulerian cycle.— Named after
Nicolaas de Bruijn, who introduced these graphs in 1946, for a different problem.

12/27

Modelling our problem with de Bruijn graphs

N.B.
For simplicity, for now our sequence to be reconstructed is assumed to be
circular. E.g. bacterial genomes are circular.

a v
» A »
o} String can be read as: ATGGCGTGCA,
o TGGCGTGCAA, GGCGTGCAAT,
< 5 2

14/27

Application to the Fragment Assembly problem

We will use de Bruijn graph for modelling our problem:
® create a de Bruijn graph from the input fragments
e find an Eulerian path in this de Bruijn graph
® this Eulerian path will yield the desired string

11/27

Definition of (full) de Bruijn graphs

Let ¥ be our alphabet.

(E.g. X ={A,C,G, T} or ¥ ={0,1} or X = {a,b,c})

Definition?

The de Bruijn graph over X of order k is a directed graph G = (V,E) s.t.
V=xkland (u,v)€Eifur...us_1=vi...vk_o.

(Equivalently: (u,v) € E if exists a word w € X s.t. u is the

(k — 1)-length prefix of w and v is the (k — 1)-length suffix of w.)

N.B.
Note that £ = ¥¥, and that the graph has loops (e.g. (000,000) € E).

2Some people call these de Bruijn graphs of order k — 1.
13/27

Alternative definition of de Bruijn (sub)graphs

Let ¥ be our alphabet.

(E.g. X ={A,C,G, T} or X = {0,1} or X = {a,b,c})

Definition

A directed graph G = (V, E) is called a de Bruijn (sub)graph of order k if
V C 41 and for all u,v € V: if (u,v) € E then there exists a word

w € YK s.t. uis the (k — 1)-length prefix of w and v is the (k — 1)-length
suffix of w.

Example
u = GCA,v = CAA, w = GCAA.

N.B.

These are subgraphs of the original de Bruijn graph. Many researchers,
esp. in bioinformatics call these graphs de Bruijn graphs. There exists also
the version with multiple edges (multigraph, later).

15/27

Modelling our problem with de Bruijn graphs

Input: A collection F of strings.

First step: Generate all k-length substrings of fragments in F.

Example

F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:

Modelling our problem with de Bruijn graphs

Now from the k-mers, we generate the (k — 1)-length prefixes and suffixes

AA, AT, CA, CG, GC, GG, GT, TG. These are the vertices. The edges
are the k-mers.

o F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3
e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
o vertices: AA, AT, CA, CG, GC, GG, GT, TG

17/27

Modelling our problem with de Bruijn graphs

® edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
(remember to only put an edge if the k-mer is present!)
® vertices: AA, AT, CA, CG, GC, GG, GT, TG

d

The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA

18/27

16/27

Modelling our problem with de Bruijn graphs

Input: A collection F of strings.

First step: Generate all k-length substrings of fragments in F.

Example

F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:
AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG.

Modelling our problem with de Bruijn graphs

o edges: AAT,ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
(remember to only put an edge if the k-mer is present!)
® vertices: AA, AT, CA, CG, GC, GG, GT, TG

Comparison to other models

Compare to modelling the same problem with overlap graphs:
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}

v
ATGGCGT
YN
GGCGTGC
(NN
L
TGCAATG

L
CAATGGC
(CAATGGC]

(N
ATGGCGT
Genome: ATGGCGTGCAATGGCGT

(GGeaTac)

Note that not all non-zero weight edges are included in the figure. The numbers
on the edges give a Hamiltonian cycle: ATGGCGTGCA.

19/27

16 /27

1827

Comparison to other models
Compare to modelling the same problem with overlap graphs using k-mers
as nodes:

o F= {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC,TGCAATG}7 k=3
® k-mers are nodes: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

Put an edge if the overlap equals k — 1. The numbers on the edges give a
Hamiltonian cycle: ATGGCGTGCA.

20/27

Practical strategies for applying de Bruijn graphs: errors

Errors is reads result in bubbles (= bulges) in the de Bruijn graph.

e B B O O D DL D)

e

-

@nm n(nv m mz vm m.

@ @6

This can be detected and handled, using multiplicity of k-mers
(multigraphs!), see next slide.

Practical strategies for applying de Bruijn graphs: repeats

v
TS
TGC
s
&bt
&fe
66 e
&s
il
Nl
Hi
GGC G
GCA
i
AAT
ATG

Genome: ATGCGGTGCGTGGCAATG

Repeats can be detected using multiplicity of k-mers (edges). Again, using
multigraphs (edges have multiplicities).

24 /27

Practical strategies for applying de Bruijn graphs: all
k-mers

Generating nearly all k-mers

In reality, only a small fraction of all 100-mers (e.g.) are really sampled.
Solution: Take shorter k than readlength. E.g. if reads have length approx.
100, then taking k = 55 will yield nearly all k-mers of the genome.

Ex.

In the example, not all 7-mers are present as reads, but all 3-mers are:
® genome: ATGGCGTGCA
® 7-mers: ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG
® 3-mers: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

21/27

Practical strategies for applying de Bruijn graphs: errors
Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This can be
detected and handled via multiplicity of k-mers (multigraphs!) or of (k — 1)-mers

linear stretches (blocks) GATE
x)
W
TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC) AGAT
(90 (8% (5x) (6x) (70 (0 (7x) (8%) \(8x) .
T Aaan
Gete crer TCTA CTAG (%)

. T o Gxy (x) (2x) (2x) e B
TAGT AGTC GTCG TCGA\ COAG GAGG AGee eer~ 2% (%) (2%) 2X) oy agis oaca acac caca Achc

(3x) (7x) (9%) (10x)\(8x) (1§x) (1§X) (11x) gopr crrr TeTa Trag (16X) (9%) (12x) (9%) (Bx) (5%)
e om s - T =
CGAC GACG ACGC (8x) (8x) (8x) (12x)

(x) (x) (x) ‘

Garr \
AGAT
o Tips

GATCCGATGA AGAA /
GCTCTAG .
TAGTCGA CGAG -
. . . . - . 3 Bubble
GAGG \AGGCT +——" TAGH/ AGAGA AGACAG
. GCTTTAG
ceacee

E.g. the software Velvet (Zerbino and Birney, 2008) uses detection and

elimination of bubbles and tips.
23/27

Eulerian cycles in multigraphs

Theorem
A connected multigraph is Eulerian (has an Eulerian cycle) if and only if
every vertex is balanced.

Now indegree = sum of multiplicities of incoming edges (= number of
incoming edges counted with their multiplicities), outdegree defined
similarly.

Recall the Bridges of Konigsberg problem, that's a multigraph.

25/27

Sequencing By Hybridization

Origin of de Bruijn graph approach to Fragment Assembly:
Sequencing By Hybridization (SBH)

suggested as alternative to SCS approach (Pevzner, 1988)
DNA chip (DNA array) with all k-mers

size 4k

entry (u, v) lights up if and only if uv is in the sample

so we get a set (multiset?) of k-mers in the sample

26 /27

Problems with Sequencing By Hybridization

SBH did not work because

lack of fidelity of hybridization (mismatches!)

array size: if longer k, better fidelity, but then array gets too big!
(exponential in k)

array size limited with current technology

not practical (at present)

But: it introduced the vastly successful approach of de Bruijn graphs
to fragment assembly

27/21

