Algoritmi di Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9) a.a. 2013/14, spring term

Computational efficiency

Computational Efficiency

As we will see later in more detail, the efficiency of algorithms is measured w.r.t.

- running time
- storage space

We will make these concepts more concrete later on, but for now want to give some intuition, using an example.

Example: Computation of nth Fibonacci number

Fibonacci numbers: model for growth of populations (simplified model)

- Start with 1 pair of rabbits in a field
- each pair becomes mature at age of 1 month and mates
- after gestation period of 1 month, a female gives birth to 1 new pair
- rabbits never die ${ }^{1}$

Definition

$F(n)=$ number of pairs of rabbits in field after n months.

[^0]
Example: Computation of nth Fibonacci number

- month 1: there is 1 pair of rabbits in the field
$F(1)=1$
- month 2: there is still 1 pair of rabbits in the field
$F(2)=1$
- month 3: there is the old pair and 1 new pair
$F(3)=1+1=2$
- month 4: the 2 pairs from previous month, plus the old pair has had another new pair

$$
F(4)=2+1=3
$$

- month 5: the 3 from previous month, plus the 2 from month 3 have each had a new pair

$$
F(5)=3+2=5
$$

Recursion for Fibonacci numbers
$F(1)=F(2)=1$
for $n>2$: $F(n)=F(n-1)+F(n-2)$.

Example: Computation of nth Fibonacci number

Algorithm 1 (let's call it fib1) works exactly along the recursive definition:

```
Algorithm fib1(n)
1. if \(n=1\) or \(n=2\)
2. then return 1
3. else
4.
return \(\operatorname{fib} 1(n-1)+\operatorname{fib} 1(n-2)\)
```


Analysis

(sketch) Looking at the computation tree, we see that every node has two children, and we go down n levels (in many branches); every node means one addition, so looks like about 2^{n} additions...
The algorithm has exponential running time.

Example: Computation of nth Fibonacci number

Algorithm 2 (let's call it fib2) computes every $F(k)$, for $k=1 \ldots n$, iteratively (one after another), until we get to $F(n)$.

Algorithm fib2(n)

1. array of int $F[1 \ldots n]$;
2. $F[1] \leftarrow 1 ; F[2] \leftarrow 1$;
3. for $k=3 \ldots n$
4. do $F[k] \leftarrow F[k-1]+F[k-2]$;
5. return $F[n]$;

Analysis

(sketch) One addition for every $k=1, \ldots, n$. Uses an array of integers of
length n.-The algorithm has linear running time and linear storage space.

Example: Computation of nth Fibonacci number

Algorithm 3 (let's call it fib3) computes $F(n)$ iteratively, like Algorithm 2, but using only 3 units of storage space.

Algorithm fib3(n)

1. int a, b, c;
2. $a \leftarrow 1 ; b \leftarrow 1 ; c \leftarrow 1$;
3. for $k=3 \ldots n$
4. \quad do $c \leftarrow a+b$;
5. $\quad a \leftarrow b ; b \leftarrow c$;
6. return c;

Analysis
(sketch) Time: same as Algo 2. Uses 3 units of storage (called a, b, and $c)$.-The algorithm has linear running time and constant storage space.

Example: Computation of nth Fibonacci number

Take-home message

- There may be more than one way of computing something.
- It is very important to use efficient algorithms.
- Efficiency is measured in terms of running time and storage space.
- In computational biology, inputs are often very large, therefore storage space is at least as important as running time.

[^0]: ${ }^{1}$ This unrealistic assumption simplifies the mathematics; however, it turns out that adding a certain age at which rabbits die does not significantly change the behaviour of the sequence, so it makes sense to simplify.

