
6 Markov Chains and Hidden Markov
Models

(This chapter1 is primarily based on Durbin et al., chapter 3, [DEKM98] and the

overview article by Rabiner [Rab89] on HMMs.)

Why probabilistic models? In problems occurring in bioinformatics, it is often

difficult to model objects without imprecisions. A probabilistic model describes a

class of objects, each of which occurs with a certain probability.

As an example, consider the following problem: In genomic DNA, the nucleotide

pair C-G (C followed by G on the same strand), denoted CpG, is less frequent than

could be expected from the frequencies of C and G. The reason is a mechanism

called methylation with which CpG pairs are turned into CpT’s. However, in certain

short areas, for example around promoters or the beginnings of genes, this mecha-

nism is suppressed: CpG occurs more often than in general. These areas are called

CpG islands and are of particular interest. They are typically a few hundred to a

few thousand nucleotides long.

CPG ISLANDS:

Identify CpG islands. We look at two variants:

1. Given a short stretch of DNA, is it a CpG island?

2. Given a long stretch of DNA, does it contain CpG islands? If so,

where are they?

We will solve the first problem using Markov Chains, and the second, using Hid-

den Markov Models.

6.1 Informal introduction to Markov Chains and HMMs

Let’s assume you come from a warm part of the world with a steady climate, say

from California, and you ended up here in Germany with its permanently changing

weather. You realize that the weather influences your mood, so you try to find out

how you can predict it. You also notice after a while that the weather is not actually

completely random, but today’s weather depends to a certain extent on yesterday’s

weather conditions. For simplicity, you label each day as having one of the fol-

lowing three weather conditions: sunny, rain/cloudy, snow. After some sampling,

you find certain dependencies: If it snowed one day, it will snow the next day with

probability 0.2, it will rain with probability 0.5, and it will be sunny with probability

1Chapter 6 of Lecture notes by Zsuzsanna Lipták, zsuzsa@cebitec.uni-bielefeld.de, for the course
”Selected Topics in Algorithmic Bioinformatics,” Winter 2008/09, Bielefeld University - preliminary

version of January 27, 2009
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6 Markov Chains and Hidden Markov Models

0.3. All your findings are summarized in the following table A = (aij)i,j=1,2,3, where

the entry aij stands for: The weather will be of type j with probability aij given that

the weather was of type i on the previous day:

snow rain sun

snow 0.2 0.5 0.3

rain 0.1 0.8 0.1

sun 0.1 0.7 0.2

We observe immediately that the rows of matrix A add up to 1: Intuitively, some-

thing must happen the next day. The example is visualized in Figure 6.1.
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sun
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Figure 6.1: Graphical representation of the example Markov Chain.

Say it is Wednesday, it is snowing, and you want to go skiing on Friday for the

weekend, and want it to rain on Monday (so as not to feel bad about working

again). Therefore, you are interested in the probability of the following sequence:

snow (today)-snow-sun-sun-sun-rain. The probability can be easily computed as

follows:

P(snow today)P(snow|snow)P(sun|snow)P(sun|sun)P(sun|sun)P(rain|sun)

= 1 � 0.2 � 0.3 � 0.2 � 0.2 � 0.7 = 0.00168.

Up to here, we have a Markov Chain, which will be defined precisely in Section 6.3.

The states are the weather types; the state at a given time depends only on the

previous state; and the observation is the sequence of states.

Now we want to modify the problem. Instead of observing the weather itself, we

will only be able to observe something that depends on the states: We now introduce

a Hidden Markov Model (HMM).
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6.1 Informal introduction to Markov Chains and HMMs

So, to continue the example, assume that your mood depends to a certain extent

upon the weather, namely in the following way. When it is sunny, you are in a good

mood 90% of the time. When it is rainy, you are in a bad mood 80% of the time.

Moreover, during your first winter in Germany, you also come to love snow. So

when it snows, you are in a good mood 70% of the time.2 This is summarized in the

following table E = (ei(b))i=1,2,3,b2{G,B}. Observe that here, the columns add up to 1.

snow rain sun

G 0.7 0.2 0.9

B 0.3 0.8 0.1

Imagine that you talk to your mum on the phone every day. She notices that

on some days, you are in a good mood, on others, you are in a bad mood. For no

apparent reason. Of course, she lives in California, so it takes her a while to realize

that your moods are connected to some extent to the changes in the weather. How-

ever, she has no Internet connection, so she does not have any information about

the weather itself. Instead, she can only observe your moods. What she observes

during one week is, for example: G-G-B-B-B-G-B. She engaged your flatmate some

time ago to make notes, so she already has a fair idea of the parameters in the

above tables (i.e. the aij’s and ei(b)’s). We visualize the new situation in Figure 6.2.
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Figure 6.2: Graphical representation of the example Hidden Markov Model.

This is now a Hidden Markov Model. The underlying states (the weather types)

still follow a simple Markov Chain, but we can no longer observe them directly.

Instead, the observation now consists of a sequence of symbols (the mood types),

which are emitted by the states following a certain probability distribution. The

formal definition will be given in Section 6.5.

2These notes were written during the great snowy period of January 2009.
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6 Markov Chains and Hidden Markov Models

To complete the example: The questions your mum may ask include:

1. What was the weather like most probably during this week?

2. How likely is it that this sequence will occur again?

3. What are the parameters of the underlying model, i.e. are the parameters A

and E correct, or could other parameters better explain the given observations?

We will see an algorithm for answering the first question in Section 6.6, and one

for the second question in Section 6.7. We will not answer the last question here

but will only sketch the problem.

6.2 A little background on probability

A finite probability space is given by

• a finite set Ω (the sample space or ground space), and

• a function P : Ω → [0, 1] s.t.
∑

ω2ΩP(ω) = 1.

Subsets of Ω are called events. Events with cardinality 1 are called elementary

events. The probability of an event A is defined as P(A) =
∑

ω2AP(ω). The comple-

mentary event of A is defined as AC = Ω \ A. For two events A,B, the event A \ B

is called the joint probability of A and B (often denoted (A,B) instead of (A \ B)). A

partition of the sample space is a family A1, . . . , An � Ω such that [iAi = Ω and

Ai \Aj = ; for i 6= j. Let A,B be events. Then

1. P(A [ B) = P(A) + P(B) − P(A \ B).

2. P(AC) = 1 − P(A).

3. P(A \ B) � P(A) − P(BC).

4. If B1, . . . , Bn is a partition of Ω, then P(A) =
∑n

i=1 P(A \ Bi).

Example 5. A fair die is thrown. Then Ω = {1, 2, 3, 4, 5, 6}, and P(x) = 1
6

for all x 2 Ω.

Let A = {2, 4}, B = {3, 4, 5}. Then P(A) = 2
6
, P(B) = 3

6
, P(A[B) = P(A) + P(B) − P(A\B) =

2
6

+ 3
6

− 1
6

= 4
6
. Let B1 = {result is even} and B2 = {result is odd}. Then B1, B2 is a

partition of Ω.

6.2.1 Conditional probabilities and Bayes’ Theorem

For two events A,B with P(B) 6= 0, the conditional probability of A given B is defined

as

P(A | B) =
P(A \ B)

P(B)
(6.1)

We call A and B independent if P(A | B) = P(A). (This is the case if and only if

P(B | A) = P(B)). Another equivalent statement is that P(A \ B) = P(A)P(B). As an

exercise, you can show that these three statements are equivalent.)
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6.2 A little background on probability

Example 6. Let (Ω,P) as before, and A = {2}, B = {result is even}. Then P(A | B) =
1
3
, P(B | A) = 1.

The theorem of total probability states that if B1, . . . , Bn is a partition of Ω, then

P(A) =
∑

i

P(A | Bi)P(Bi). (6.2)

The following is referred to as Bayes’ theorem or Bayes’ formula: Given two events

A and B s.t. P(B) 6= 0,

P(A | B) =
P(B | A)P(A)

P(B)
. (6.3)

Bayes’ formula is a simple consequence of the definition of conditional proba-

bilities, but it has profound consequences. In particular, it gives us a method for

deciding between alternative models for the same experimental data, see the next

section.

6.2.2 How to use Bayes’ theorem for model comparison

Here we show how to decide between alternative models. The question is: Given

(experimental) data, which model (what hypothesis) explains the data better?

Consider the following example (taken from Durbin [DEKM98], p.6.): In a casino,

there are two types of dice, fair and loaded. A fair die produces 1, 2, 3, 4, 5, 6 each

with probability 1
6
. A loaded die shows a 6 with probability 1

2
, and all other numbers

with probability 1
10

each. 99% of dice are fair, 1% loaded. We pick up a die at random

and roll it 3 times. We observe the sequence 6, 6, 6. Is the current die fair or loaded?

So we have P(F) = 0.99, P(L) = 0.01. Further, P(x | F) = 1
6

for x 2 {1, 2, 3, 4, 5, 6},

while P(6 | L) = 1
2

and P(x | L) = 1
10

for x 2 {1, 2, 3, 4, 5}. We can also compute the joint

probabilities P(6, F) = 1
6
� 99

100
= 99

600
and P(6, L) = 1

2
� 1

100
= 3

600
.

In order to judge whether our die is fair or loaded, we want to work out the

posterior probability P(model | data), in this case of the hypothesis that the die is

loaded, P(L | 3 sixes). By Bayes’ theorem,

P(L | 3 sixes) =
P(3 sixes | L)P(L)

P(3 sixes)
. (6.4)

P(3 sixes | L) is called the likelihood of the hypothesis. By independence, we

have P(3 sixes | L) = P(6 | L)3 = 1
8
. Moreover, by the theorem of total probability,

P(3 sixes) = P(3 sixes | L)P(L) + P(3 sixes | F)P(F) = 1
8
� 1

100
+ (1

6
)3 � 99

100
= 0.00125 +

0.00458333 . . . � 0.0058. So altogether we have

P(L | 3 sixes) =
P(3 sixes | L)P(L)

P(3 sixes)
=

0.00125

0.0058
� 0.214. (6.5)

So in spite of the unlikely outcome of 3 sixes, we are still more likely to have a

fair die than a loaded die.
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6 Markov Chains and Hidden Markov Models

When we have no prior information about the probability of the different models,

then it suffices to look at the likelihood P(data | model). More precisely: Let the

data D be given, and let M1, . . . ,Mk be different models. We want to choose the

one which explains the data best, so we are interested in which model maximizes

the posterior probability P(Mi | D). If we do not know or do not want to assume

anything about P(Mi) for the different models Mi, then we should assume uniform

distribution, i.e., P(Mi) = P(Mj) for all i, j. In this case (but only in this case!)

we have: P(Mi | D) > P(Mj | D) if and only if P(D | Mi) > P(D | Mj), because

P(Mi | D) =
P(D|Mi)P(Mi)

P(D)
=

P(D|Mi)P(Mj)

P(D)
>

P(D|Mj)P(Mj)

P(D)
= P(Mj | D). (This proves the

implication P(D | Mi) > P(D | Mj) ⇒ P(Mi | D) > P(Mj | D), which is what we need

here.)

Thus, in cases where there is no prior information about the distribution of the

models, then one looks at the likelihoods P(data | model), see e.g. Section 6.4.

6.3 Formal definition of Markov Chains

A (first order, discrete, homogeneous) Markov Chain (M.C.) is a stochastic process

consisting of

• a finite set of states Q, where |Q| = N; we will refer to states as 1, 2, . . . N. We

denote the state at time i as qi.

• a transition probability matrix A = (akℓ)k,ℓ2Q of size N � N, where akℓ is the

probability of being in state ℓ, given that the previous state was k:

akℓ = P(qi = ℓ | qi−1 = k).

So 0 � akℓ � 1 for all k, ℓ 2 Q, and
∑

ℓ akℓ = 1 for all k (the rows add up to 1).

Note that the akℓ’s are independent of time i (thus, the M.C. is homogeneous).

• an initial probability vector π = (π1, . . . , πN), where

πk = P(q1 = k), the probability of starting in state k.

Thus, 0 � πk � 1 for all k, and
∑

k πk = 1.

The Markov chain can be written as a triple M = (Q,A, π). It is common to

visualize a Markov chain as a directed graph with loops, see Fig. 6.3.

Since M is a first order Markov chain, the probability of being in state k depends

only on the previous state, in other words

P(qi = ki | q1 = k1, . . . , qi−1 = ki−1) = P(qi = ki | qi−1 = ki−1). (6.6)

Equation (6.6) is often referred to as the Markov property, and is the fundamental

property of (first-order) Markov Chains. Using the Markov property, it is easy to

compute the probability of a path q = q1 . . . qL:
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6.3 Formal definition of Markov Chains
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Figure 6.3: Graphical representation of a Markov chain with 4 states.

P(q1, q2, . . . , qL) = πq1

L∏

i=2

aqiqi−1
. (6.7)

Note that we are using a slightly sloppy notation: More formally we should write

P(q1 = k1, q2 = k2 . . . , qL = kL) instead of P(q1, q2, . . . , qL), but whenever the other

variable is not necessary, we drop it (in this case ki, the value of the state at time i).

So P(qi) stands for: the probability of the state at time i being what it is, namely

the value of qi. (More precisely, the states can be modelled as random variables.)

Example 7. Consider the example from Section 6.1. Given the initial proba-

bility vector π = (0.1, 0.7, 0.2), the probability of the sequence snow-sun-sun is

P(snow-sun-sun) = 0.1 � 0.3 � 0.2 = 0.006.

The following are important properties of Markov chains:

1. An gives the transition probabilities after n steps, i.e., if a
(n)
kℓ is the (k, ℓ)’th

entry of An, then a
(n)
kℓ = P(qt+n = ℓ | qt = k), the probability of being in state ℓ

at time t + n if we were in state k at time t (for all t � 0).

2. The distribution after n steps, starting from the initial distribution π, can be

computed as πAn.

6.3.1 Moving from probabilities to log of probabilities

When computing probabilites, we often have to multiply many very small numbers

(e.g. when computing the probability of a particular path q using Equation (6.7)).

This quickly leads to computational problems in form of rounding errors. The

problem is usually solved by moving from probabilities to the log of probabilities,

so Equation (6.7) becomes

41



6 Markov Chains and Hidden Markov Models

log P(q1, q2, . . . , qL) = log πq1
+

L∑

i=2

log aqiqi−1
. (6.8)

Hereby, any log function can be used, but log2, ln = loge and log10 are the most

common. We recall the following fundamental properties of the logarithm:

Lemma 6.1 (Some properties of the log-function). Let log(x) = logb(x) denote the

logarithm to some base b > 1. Let x, y > 0. We have

1. log(xy) = log x + log y.

2. log(x
y
) = log x − log y.

3. log is strictly monotonically increasing, i.e., x > y if and only if log x > log y.

4. In particular, the mapping log : (0,+∞) → (−∞,+∞) is a bijection.

The first two properties will simplify computation, and the last two proper-

ties ensure that we can freely move back and forth between probabilities and

log-probabilities, including when we have to maximize probabilities (see e.g. Sec-

tions 6.4 and 6.6).

6.4 Model comparison with Markov chains

Let’s return to our Problem 1 on CpG islands: Given a short DNA sequence x, is it a

CpG island? We will construct two Markov chains, one modelling CpG islands (the

+ model), the other non-CpG-islands (the − model), and compare their likelihoods

P(x | + model) and P(x | − model). (Because we have no information about the

frequency of CpG islands, we assume that both models are equally likely.) We will

use a likelihood ratio test.

A C

TG

Figure 6.4: Markov chain for describing nucleotide sequences.

Each Markov chain has four states, A,C,T, and G, see Figure 6.4. For estimating

the transition probabilities, we use maximum likelihood (ML) estimators: Using a

database of DNA sequences, where the CpG islands are known, we denote by c+
ij the

absolute frequency of nucleotide j following nucleotide i within a CpG island. Then
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6.5 Hidden Markov Models

+ A C G T

A 0.180 0.274 0.426 0.120

C 0.171 0.368 0.274 0.188

G 0.161 0.339 0.375 0.125

T 0.079 0.355 0.384 0.182

− A C G T

A 0.300 0.205 0.285 0.210

C 0.322 0.298 0.078 0.302

G 0.248 0.246 0.298 0.208

T 0.177 0.239 0.292 0.292

Figure 6.5: Transition probabilities for CpG islands (+) and non CpG islands (−),

taken from [DEKM98].

we set a+
ij as the fraction of i followed by j over all pairs ik (k any nucleotide). We

compute a−
ij analogously using c−

ij, the frequency of nucleotide j following nucleotide

i outside a CpG island:

a+
ij =

c+
ij∑

k2Qc+
ik

and a−
ij =

c−
ij∑

k2Qc−
ik

. (6.9)

The resulting transition tables for the + and the − models are given in Figure 6.5.

As expected, a+
CG is much higher than a−

CG. To test whether our sequence x is a CpG

island, we compute P(x | + model) and P(x | − model) and compare which is higher.

Or, reducing the two computations to one, we can compute the log-odds-ratio S(x)

of x = x1 . . . xL w.r.t. the two models as

S(x) = log
P(x | + model)

P(x | − model)
= log

∏L
i=1 a+

xi−1xi∏L
i=1 a−

xi−1xi

= log

L∏

i=1

a+
xi−1xi

a−
xi−1xi

=

L∑

i=1

log
a+

xi−1xi

a−
xi−1xi

=

L∑

i=1

(log a+
xi−1xi

− log a−
xi−1xi

), (6.10)

where, for convenience of notation, we define x0 = 0 and a+
0i = π+

i , and analogously

for the − model. Now we have

P(x | + model) > P(x | − model) ⇔
P(x | + model)

P(x | − model)
> 1 ⇔ log

P(x | + model)

P(x | − model)
> 0.

Therefore, if S(x) > 0, then x is more likely to be a CpG island than a non CpG

island.

6.5 Hidden Markov Models

Now we turn to Problem 2 on CpG islands: Given a long DNA sequence x (of length

L), where are the CpG islands contained in it, if any? A naive solution would be:

Use the two Markov chains defined above and test, for each short substring of x

(i.e., of length ℓ for fixed values of ℓ), whether it is a CpG island. Problem: What

values of ℓ should we choose? Instead, we will use a Hidden Markov Model for

solving the problem.
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Lx 2 x observable

hiddenq1 q2q L

x 1

Figure 6.6: Graphical representation of a Hidden Markov Model.

A Hidden Markov Model (HMM) is a triple H = (Σ,Q,Θ) where

• Σ is a (finite) alphabet of symbols. Denote the symbol emitted at time i by xi.

• Q is a finite set of states, |Q| = N.

• Θ are the parameters:

– state transition matrix A = (akℓ)k,ℓ2Q, where akℓ = P(qi = ℓ | qi−1 = k), i � 1.

– emission probabilities ek(b), k 2 Q,b 2 Σ, where ek(b) = P(xi = b | qi = k) =

P(b | k), i � 1.

– an initial state distribution vector π = (π1, . . . , πN).

Note that the akℓ and the vector π are probability distributions, thus for all k, ℓ,

0 � akℓ, πk � 1. Moreover,
∑N

k=1 πk = 1, and
∑N

ℓ=1 akℓ = 1 for all k.

Example 8. In the introductory example (Section 6.1), Σ = {G,B} and Q =

{snow,rain,sun}.

A path is a sequence of states q = q1q2 . . . qL, which follows a simple Markov modelM = (Q,A, π). The path q emits a sequence of symbols x = x1x2 . . . xL 2 ΣL, which

is referred to as the observation. In a HMM, there is no one-to-one correspondence

between an observation x and the underlying state path q. Hence the term hidden.

If we know both the observation sequence x = x1 . . . xL and the state path q =

q1 . . . qL, then it is easy to compute the joint probability P(x, q):

P(x, q) = πq1
eq1

(x1)

L∏

i=2

aqi−1qi
eqi

(xi). (6.11)

However, usually we do not know q, but only know the observation x. Given an

observation x, we want to answer the following questions:

1. What is a most likely path that could have generated x?

2. What is the probability of x?

3. What is the probability of being in state k at time i, given the observation x,

i.e., what is P(qi = k | x), for fixed k and i? (Motivation for this last question

will be given later.)
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G−

A− C−

T−T+

A+ C+

G+

switching with 
small probability

Figure 6.7: HMM for the CpG island example: Of the new transitions, only the

transitions from C+ to the − states (dashed) are included in the drawing.

A+ C+ G+ T+ A− C− G− T−

A+ 0.180p 0.274p 0.426p 0.120p 1−p
4

1−p
4

1−p
4

1−p
4

C− 0.171p 0.368p 0.274p 0.188p 1−p
4

1−p
4

1−p
4

1−p
4

G− 0.161p 0.339p 0.375p 0.125p 1−p
4

1−p
4

1−p
4

1−p
4

T− 0.079p 0.355p 0.384p 0.182p 1−p
4

1−p
4

1−p
4

1−p
4

A− 1−q
4

1−q
4

1−q
4

1−q
4

0.300q 0.205q 0.285q 0.210q

C− 1−q
4

1−q
4

1−q
4

1−q
4

0.322q 0.298q 0.078q 0.302q

G− 1−q
4

1−q
4

1−q
4

1−q
4

0.248q 0.246q 0.298q 0.208q

T− 1−q
4

1−q
4

1−q
4

1−q
4

0.177q 0.239q 0.292q 0.292q

Figure 6.8: Transition probabilities the HMM for identifying CpG islands, derived

from the transition tables in Fig. 6.5 (taken from [Sha01]).

An answer to 2. will supply us with an answer to our Problem no. 2 on CpG-

islands. We model the problem as an HMM by combining the two previous Markov

chains.

The transition matrix is given in Fig. 6.8, assuming that the probability of staying

within a CpG island is p, and that of staying outside is q. Moreover, we assume

that when switching between the two types of DNA, each nucleotide is equally likely

(i.e., P(i− | j+) = 1−p
4

and P(i+ | j−) = 1−q
4

for any i, j 2 {A,C, T,G}). Each state

emits only one symbol, namely ei+ (i) = ei− (i) = 1 and ei+ (j) = ei− (j) = 0 for j 6= i,

where i, j 2 {A,C,G, T }. This makes the HMM slightly degenerate3. Thus the paths

G+G+C+G+, G−G−C−G− and G+G−C−G+ all emit the sequence of symbols GGCG,

but are not all equally likely.

3Modelling the problem with only two hidden states + and - is not possible because then we would

lose the dependence of the symbols on the previously emitted symbol.
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6.6 Computing the most probable path

Given observation x = x1x2 . . . xL, we want to find a most probable state path q� =

q�1 . . . q�L that could have emitted x. In other words, we are looking for

q� = argmax
q

P(x, q). (6.12)

Note that q� need not be unique, i.e., there may be more than one path q max-

imizing P(x, q). In that case, q� can be chosen arbitrarily as any of these q’s. For

simplicity of exposition, we will assume from now on that q� is unique.

We can find q� by enumerating all possible paths q of length L, computing the

joint probability P(x, q) of q and x, and choosing the one(s) with highest probability.

However, this method is inefficient since the number of paths grows exponentially

with L. Instead, q� can be found recursively. We will use dynamic programming

(DP) for finding q�. Fix state k and time i, and consider

Vk(i) = highest probability of any path q = q1 . . . qi

emitting x1 . . . xi, where qi = k,

the probability of a most probable path ending in k that emitted x up to and includ-

ing xi. (Note that the Vk(i)’s are defined dependent on the observation x, so you get

different Vk(i)’s for different x.) If we can compute the Vk(i)’s, then we are done,

because

P(x, q�) = max{Vk(L) | k 2 Q}, (6.13)

and q� can be found by backtracing in the DP table. But the Vk(i) can be computed

from previous values, namely for any k 2 Q and i � 2,

Vk(i) = ek(xi)︸ ︷︷ ︸
prob. of k

emitting xi

�max
ℓ

0BBB� Vℓ(i − 1)aℓk︸ ︷︷ ︸
prob. of best path which ends in ℓ

and of transition from ℓ to k

1CCCA . (6.14)

Now all we need are the initial values Vk(1) = ek(x1)πk, and we are ready for the

algorithm.

Viterbi’s algorithm

Initialization (i = 1): Vk(1) = ek(x1)πk for all k 2 Q

Recursion (i = 2, . . . , L): Vk(i) = ek(xi)maxℓ(Vℓ(i − 1)aℓk) for all k 2 Q

ptri(k) = argmaxℓ(Vℓ(i − 1)aℓk) // remember path

Termination: P(x, q�) = maxk Vk(L)

q�L = argmaxk(Vk(L))

Traceback (i = L, . . . , 2): q�i−1 = ptri(q
�
i). // recover path q�
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6.7 Posterior decoding

Complexity

We need to store the DP table which has size N � L, where N = |Q| is the number

of states, and L the length of the observation, so storage space is O(NL). For each

entry Vk(i), we maximize over N values aℓk � Vℓ(i − 1), so runtime of the algorithm is

O(N2L) for computing P(x, q�), and O(NL) for the traceback step (producing q�).
(Compare to O(NLL) time for computing P(q, x) for every possible path q, the naive

solution mentioned at the beginning of this section.)

6.7 Posterior decoding

Recall that we want to have information about the hidden state path, given our

observation sequence x. Defining q�, the most probable path, is only one possible

alternative. If many different paths have almost equal probability of emitting x, it

may not be very informative to have q�. Instead, we may be interested in the most

probable state at a particular time i, given observation x. We will look for the path

q̂ = (q̂1, . . . , q̂L) s.t. for each i, q̂i is the most likely state, given observation x.

For each i = 1, . . . , L, let us find the state k which maximizes P(qi = k | x), i.e., the

most probable state at time i, given x:

q̂i = argmax
k

P(qi = k | x). (6.15)

Note that q̂ and q� need not be identical; in fact, q̂ may not even be a legal path

(if not all akℓ are positive, then there are impossible transitions).

How do we compute P(qi = k | x)? Recall that for two events A,B, where P(B) 6= 0,

we have 1. P(A | B) =
P(A\B)

P(B)
, and 2. P(A \ B) = P(A)P(B | A).

P(qi = k | x)
1.
=

P(qi = k, x)

P(x)
. (6.16)

We will return in a moment to computing P(x). The enumerator P(qi = k, x) can

be computed as

P(qi = k, x) = P(

A︷ ︸︸ ︷
qi = k, x1, x2, . . . , xi,

B︷ ︸︸ ︷
xi+1, . . . , xL)

2.
= P(x1, . . . , xi, qi = k)P(xi+1, . . . , xL | x1, . . . , xi, qi = k)

= P(x1, . . . , xi, qi = k)
︸ ︷︷ ︸
forward variable Fk(i)

P(xi+1, . . . , xL | qi = k)
︸ ︷︷ ︸

backward variable Bk(i)

, (6.17)

where the last equality holds because the emission at time t depends only on the

state at time t (and not on previous emissions), and the state at time t depends only

on the state at time t − 1. Altogether we have

P(qi = k | x) =
Fk(i)Bk(i)

P(x)
. (6.18)
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6 Markov Chains and Hidden Markov Models

6.7.1 The forward variable. Computing P(x).

Computing the forward variable is easy, in fact it is almost identical to computing

the Vk(i)’s. The crucial observation is

Fk(i) = P(x1, . . . , xi, qi = k) = ek(xi)︸ ︷︷ ︸
prob. of k

emitting xi

�∑
ℓ2Q

P(x1, . . . , xi−1, qi−1 = ℓ) � aℓk︸ ︷︷ ︸
prob. of a path emitting x1, . . . , xi−1,
ending in ℓ, and of transition from ℓ to k

= ek(xi)
∑

ℓ2Q

Fℓ(i − 1)aℓk, (6.19)

so the max in Equation (6.14), the recursion for Vk(i), is replaced by a sum. The

initial condition is Fk(1) = ek(x1)πk for all k 2 Q.

Moreover, we can now easily compute P(x), the probability of the sequence x

occuring in the given HMM (see Question 2 from Section 6.5):

P(x) =
∑

k2Q

Fk(L). (6.20)

The full algorithm is given below.

Forward algorithm

Initialization (i = 1): Fk(1) = ek(x1)πk for all k 2 Q

Recursion (i = 2, . . . , L): Fk(i) = ek(xi)
∑

ℓ Fℓ(i − 1)aℓk for all k 2 Q

Termination: P(x) =
∑

k Fk(L)

Again, runtime is O(N2L) and space O(NL).

6.7.2 The backward variable

The backward variable is a bit less intuitive than the forward variable. It is called

backward variable, because the DP table is filled in from back to front, i.e., starting

from the L’th column, and ending at the first. Note that the definition of Bk(i)

is a conditional probability (as opposed to the forward variable, which is a joint

probability): Bk(i) is the probability that the remaining sequence xi+1 . . . xL will be

produced, given that the current state qi is k. We can compute this value if we

already know the later values Bℓ(i + 1) for ℓ 2 Q:

Bk(i) = P(xi+1, . . . , xL | qi = k) (6.21)

=
∑

ℓ

akℓ � eℓ(xi+1) � P(xi+2 . . . xL | qi+1 = ℓ)

=
∑

ℓ

akℓ � eℓ(xi+1) � Bℓ(i + 1).
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6.8 Other topics

The extremal conditions are Bk(L) = 1 for all k 2 Q. Again, the backward variables

can be used to compute P(x), and we have

P(x) =
∑

k2Q

Bk(1) � ek(x1)πk. (6.22)

Here is the full algorithm:

Backward algorithm

Initialization (i = L): Bk(L) = 1 for all k 2 Q

Recursion (i = L − 1, . . . , 1): Bk(i) =
∑

ℓ akℓeℓ(xi+1)Bℓ(i + 1) for all k 2 Q

Termination: P(x) =
∑

k Bk(1)ek(x1)πk

Again, runtime is O(N2L) and space O(NL).

6.8 Other topics

Another big topic is how to estimate the parameters of a given HMM. This is done

using so called training sequences x1, . . . , xn, which are then used in order to find

good values for the parameters of the HMM. Two cases can be distinguished, namely

when the state paths are known, and when the state paths are not known.

If the state paths are known, ML estimators can be used: We define aij’s as we

did in Section 6.4, by setting aij the fraction of transitions from state i to j over all

transitions from i to any state k. The initial probability vector π and the emission

probabilities ek(b) can be estimated similarly. Often, ML estimators are corrected

by adding some base value in order to avoid overfitting.

When the state paths are not known, iterative algorithms such as Viterbi training

or the Baum-Welch algorithm are used. The idea is to start with an arbitrary set of

parameters and iteratively improve them until reaching some local optimum.

For more, see Durbin et al., chapter 3, [DEKM98] and the overview article by

Rabiner [Rab89] on HMMs.
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