Some formalism on strings (1)

Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

Strings and Sequences in Computer Science

Some formalism on strings (1): Examples

Examples

- DNA: $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$, alphabet size $|\Sigma|=4$, a string of length 5 is $s=$ ACCTG, $s_{1}=\mathrm{A}, s_{2}=s_{3}=\mathrm{C}, s_{4}=\mathrm{T}, s_{5}=\mathrm{G}$.
- RNA: $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}$, again alphabet size is 4
- protein: $\Sigma=\{A, C, D, E, F, \ldots, W, Y\}$, alphabet size is 20 , ANRFYWNL is a string over Σ of length 8
- English alphabet: $\Sigma=\{a, b, c, \ldots, x, y, z\}$ of size 26

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a substring!
Ex.: Let $s=$ ACCTG, then ACT is a subsequence but not a substring.
2. Every prefix is a substring, every suffix is a substring.
3. t is substring of $s \Leftrightarrow t$ is prefix of a suffix of $s \Leftrightarrow t$ is suffix of a prefix of s

- Σ a finite set called alphabet
- its elements are called characters or letters
- with $|\Sigma|$ we denote the size of the alphabet (number of different characters)
- a string over Σ is a finite sequence of characters from Σ
- we write strings as $s=s_{1} s_{2} \ldots s_{n}$, where the s_{i} (for $i=1, \ldots, n$) are characters from Σ N.B.: We number strings from 1, not from 0
- $|s|$ is the length of string s
- ϵ is the empty string, the (unique) string of length 0
- Σ^{n} is the set of strings of length n
- $\Sigma^{*}=\bigcup_{n=0}^{\infty} \Sigma^{n}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \ldots$ is the set of all strings over Σ

Some formalism on strings (2)

Let $s=s_{1} \ldots s_{n}$ be a string over Σ.
ex. $s=$ ACCTG

- t is a substring of s if $t=\epsilon$ or $t=s_{i} \ldots s_{j}$ for some $1 \leq i \leq j \leq n$

$$
\text { (i.e., a "contiguous piece" of } s \text {) CCT, AC, .. }
$$

- t is a prefix of s if $t=\epsilon$ or $t=s_{1} \ldots s_{j}$ for some $1 \leq j \leq n$
(i.e., a "beginning" of s) AC, ACCTG, ...
- t is a suffix of s if $t=\epsilon$ or $t=s_{i} \ldots s_{n}$ for some $1 \leq i \leq n$ (i.e., an "end" of s)

CCTG, G, ...

- t is a subsequence of s if t can be obtained from s by deleting some (possibly 0 , possibly all) characters from s

ACT, СCT, . .
N.B.
string $=$ sequence, but substring \neq subsequence .

Counting strings

Question
How big is Σ^{n}, i.e., how many strings of length n are there?
Answer
$\left|\Sigma^{n}\right|=|\Sigma|^{n}$. E.g. there is $|\Sigma|^{0}=1$ string of length 0 , there are 4 strings of length 1 over the DNA alphabet, 16 of length 2,64 of length 3 , etc. (We already saw this argument in connection with the degeneracy of the genetic code.)

Counting substrings, subsequences etc.

Question
Given $s=s_{1} \ldots s_{n}$. How many

- prefixes,
- suffixes,
- substrings,
- subsequences
does s have (exactly, at most, at least)?

Informal definition
Given $s, t \in \Sigma^{*}$ (i.e., s, t are two strings over the same alphabet Σ, not necessarily of the same length), an alignment of s and t is a way of writing one above the other, possibly inserting gaps (denoted "-"), in such a way that (a) both have the same length, and (b) no two gaps are above each other.

Ex: five different alignments of $s=$ ACCT and $t=$ CAT

$-A C C T$	ACCT	ACCT	-ACCT	$---A C C T$
CA--T	-CAT	CAT-	CA--T	CAT----

Alignment \mathcal{A} has length $|\mathcal{A}|$, and the columns of \mathcal{A} are called $\mathcal{A}^{(i)}$, for $i=1, \ldots,|\mathcal{A}|$.
Ex:

- ACCT	ACCT	ACCT	-ACCT	$---A C C T$
CA--T	-CAT	CAT-	CA--T	CAT----

E.g. for the first alignment above, $\mathcal{A}^{(1)}=\binom{\bar{c}}{\mathrm{c}}$ and $\mathcal{A}^{(2)}=\binom{\mathrm{A}}{\mathrm{A}}$.

Length of alignments

Given $s, t \in \Sigma^{*}$ and an alignment \mathcal{A} of s and t, how long is \mathcal{A} at most? At least?

Scoring alignments

Informal definition
The score of an alignment is the sum of the scores of its columns. A scoring function scores each column according to whether it is a match (two characters which are the same), a mismatch (two different characters), or a gap (gap+character or character+gap).

Example

	match	mismatch	gap
f_{1}	2	-1	-1
f_{2}	1	-1	-2

[^0]
Scoring alignments

$$
\begin{array}{c|ccc}
& \text { match } & \text { mismatch } & \text { gap } \\
\hline f_{1} & 2 & -1 & -1
\end{array}
$$

Formal definition
A scoring function f is a pair (p, g), where $p: \Sigma \times \Sigma \rightarrow \mathbb{R}$ and $g \in \mathbb{R}$, and for a column $\mathcal{A}^{(i)}=\binom{x}{y}$, we have

$$
f\binom{x}{y}= \begin{cases}p(x, y) & \text { if } x, y \in \Sigma \\ g & \text { if } x=- \text { or } y=-.\end{cases}
$$

E.g. for f_{1} :

- $g=-1$, and
- $p(a, b)= \begin{cases}2 & \text { if } a=b \\ -1 & \text { if } a \neq b .\end{cases}$

This will allow us to define more general scoring functions later.

Def.
Given $s, t \in \Sigma^{*}$ and scoring function f, the similarity of s and t, is defined as

$$
\operatorname{sim}(s, t)=\max \{\operatorname{score}(\mathcal{A}): \mathcal{A} \text { is an alignment of } s \text { and } t .\}
$$

Optimal alignments
N.B.

- Whether an alignment is optimal, depends on the scoring function!
- If \mathcal{A} is an optimal alignment of s, t, then, given any alignment \mathcal{A}^{\prime} of s, t,

$$
\operatorname{score}(\mathcal{A}) \geq \operatorname{score}\left(\mathcal{A}^{\prime}\right)
$$

(obviously using the same scoring function).

- There may be more than one optimal alignment of two strings s and t.

Scoring alignments

So now we have: Given a scoring function $f=(p, g)$ and an alignment \mathcal{A}, the score of \mathcal{A} is

$$
\operatorname{score}(\mathcal{A})=\sum_{i=1}^{|\mathcal{A}|} f\left(\mathcal{A}^{(i)}\right)
$$

the sum of the scores of the alignment columns.

Optimal alignments

Def.
Given $s, t \in \Sigma^{*}$ and scoring function f, the similarity of s and t, is defined as

$$
\operatorname{sim}(s, t)=\max \{\operatorname{score}(\mathcal{A}): \mathcal{A} \text { is an alignment of } s \text { and } t .\}
$$

Def.

An optimal alignment of s and t is an alignment \mathcal{A} with maximum score, i.e. an alignment \mathcal{A} s.t.

$$
\operatorname{score}(\mathcal{A})=\operatorname{sim}(s, t)
$$

Equivalently:
$\operatorname{score}(\mathcal{A})=\max \left\{\operatorname{score}\left(\mathcal{A}^{\prime}\right): \mathcal{A}^{\prime}\right.$ is an alignment of s and t. $\}$

Our computational problem: Global alignment

Now we can formally state our computational problem:
Problem variant 1
Input: Two strings s, t over alphabet Σ, scoring function f.
Output: An optimal alignment of s and t.
Problem variant 2
Input: Two strings s, t over alphabet Σ, scoring function f.
Output: $\operatorname{sim}(s, t)$.
Note that in Variant 2, we want to output a number, we are not interested in an optimal alignment itself.

[^0]: Usually match ≥ 0 and mismatch, gap ≤ 0

