Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology a.a. 2015/16, fall term

Strings and Sequences in Computer Science

Some formalism on strings (1)

- Σ a finite set called alphabet
- its elements are called characters or letters
- with $|\Sigma|$ we denote the size of the alphabet (number of different characters)
- a string over Σ is a finite sequence of characters from Σ
- we write strings as $s=s_1s_2\dots s_n$, where the s_i (for $i=1,\dots,n$) are characters from Σ N.B.: We number strings from 1, not from 0
- |s| is the length of string s
- ullet is the empty string, the (unique) string of length 0
- Σ^n is the set of strings of length n
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$ is the set of all strings over Σ

2 / 17

Some formalism on strings (1): Examples

Examples

- DNA: $\Sigma = \{A,C,G,T\}$, alphabet size $|\Sigma| = 4$, a string of length 5 is s = ACCTG, $s_1 = A$, $s_2 = s_3 = C$, $s_4 = T$, $s_5 = G$.
- RNA: $\Sigma = \{\texttt{A,C,G,U}\}$, again alphabet size is 4
- protein: $\Sigma = \{A,C,D,E,F,\dots,W,Y\}$, alphabet size is 20, ANRFYWNL is a string over Σ of length 8
- \bullet English alphabet: $\Sigma = \{a,b,c,\ldots,x,y,z\}$ of size 26

Some formalism on strings (2)

Let $s = s_1 \dots s_n$ be a string over Σ .

ex. s = ACCTG

- t is a substring of s if $t = \epsilon$ or $t = s_i \dots s_j$ for some $1 \le i \le j \le n$ (i.e., a "contiguous piece" of s)
- t is a prefix of s if $t = \epsilon$ or $t = s_1 \dots s_j$ for some $1 \le j \le n$ (i.e., a "beginning" of s)

 AC, ACCTG, ...
- t is a suffix of s if $t = \epsilon$ or $t = s_i \dots s_n$ for some $1 \le i \le n$ (i.e., an "end" of s)
- t is a subsequence of s if t can be obtained from s by deleting some (possibly 0, possibly all) characters from s

 ACT, CCT, ...

N.B.

3 / 17

string = sequence, but substring \neq subsequence!

4 / 17

Substrings etc.

N.B.

- Every substring is a subsequence, but not every subsequence is a substring!
 - **Ex.:** Let s = ACCTG, then ACT is a subsequence but not a substring.
- 2. Every prefix is a substring, every suffix is a substring.
- 3. t is substring of $s \Leftrightarrow t$ is prefix of a suffix of $s \Leftrightarrow t$ is suffix of a prefix of s

Counting strings

Question

How big is Σ^n , i.e., how many strings of length n are there?

Answe

 $|\Sigma^n|=|\Sigma|^n.$ E.g. there is $|\Sigma|^0=1$ string of length 0, there are 4 strings of length 1 over the DNA alphabet, 16 of length 2, 64 of length 3, etc. (We already saw this argument in connection with the degeneracy of the genetic code.)

5 / 17

Counting substrings, subsequences etc.

Question

Given $s = s_1 \dots s_n$. How many

- prefixes,
- suffixes,
- substrings,
- subsequences

does s have (exactly, at most, at least)?

Formalizing alignments

Informal definition

Given $s,t\in \Sigma^*$ (i.e., s,t are two strings over the same alphabet Σ , not necessarily of the same length), an alignment of s and t is a way of writing one above the other, possibly inserting gaps (denoted "-"), in such a way that (a) both have the same length, and (b) no two gaps are above each other.

Ex: five different alignments of s = ACCT and t = CAT

7 / 17 8 / 17

Formalizing alignments

Formal definition

An alignment $\mathcal A$ of $s,t\in \Sigma^*$ is a matrix with two rows and entries from $\Sigma\cup\{-\},$ where

- 1. deleting all gaps from the first row yields s
- 2. deleting all gaps from the second row yields t
- 3. no column consists of two gaps

Ex:

Formalizing alignments

Alignment $\mathcal A$ has length $|\mathcal A|$, and the columns of $\mathcal A$ are called $\mathcal A^{(i)}$, for $i=1,\dots,|\mathcal A|$.

Ex:

9 / 17

E.g. for the first alignment above, $\mathcal{A}^{(1)}=\left(egin{array}{c}-\\c\end{array}\right)$ and $\mathcal{A}^{(2)}=\left(egin{array}{c}A\\A\end{array}\right)$

10 / 17

Length of alignments

Given $s,t\in \Sigma^*$ and an alignment $\mathcal A$ of s and t, how long is $\mathcal A$ at most? At least?

Scoring alignments

Informal definition

The score of an alignment is the sum of the scores of its columns. A scoring function scores each column according to whether it is a match (two characters which are the same), a mismatch (two different characters), or a gap (gap+character or character+gap).

Example

	match	mismatch	gap
f_1	2	-1	-1
f_2	1	-1	-2

Usually match ≥ 0 and mismatch, gap ≤ 0 .

11 / 17

Scoring alignments

Formal definition

A scoring function f is a pair (p,g), where $p:\Sigma \times \Sigma \to \mathbb{R}$ and $g\in \mathbb{R}$, and for a column $\mathcal{A}^{(i)}=\binom{v}{v}$, we have

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} p(x,y) & \text{if } x,y \in \Sigma \\ g & \text{if } x = - \text{ or } y = -. \end{cases}$$

E.g. for f_1 :

- ullet g=-1, and
- $p(a, b) = \begin{cases} 2 & \text{if } a = b \\ -1 & \text{if } a \neq b. \end{cases}$

This will allow us to define more general scoring functions later.

13 / 17

15 / 17

Scoring alignments

So now we have: Given a scoring function f=(p,g) and an alignment $\mathcal{A},$ the score of \mathcal{A} is

$$score(A) = \sum_{i=1}^{|A|} f(A^{(i)}),$$

the sum of the scores of the alignment columns.

14 / 17

Optimal alignments

Def.

Given $s,t\in \Sigma^*$ and scoring function f, the similarity of s and t, is defined as

 $\mathit{sim}(s,t) = \max\{\mathit{score}(\mathcal{A}) \ : \ \mathcal{A} \ \text{is an alignment of} \ s \ \text{and} \ t.\}$

Optimal alignments

Def.

Given $s,t\in \Sigma^*$ and scoring function f, the similarity of s and t, is defined as

 $sim(s, t) = max\{score(A) : A \text{ is an alignment of } s \text{ and } t.\}$

Def.

An optimal alignment of s and t is an alignment $\mathcal A$ with maximum score, i.e. an alignment $\mathcal A$ s.t.

score(A) = sim(s, t).

Equivalently:

 $score(A) = max\{score(A') : A' \text{ is an alignment of } s \text{ and } t.\}$

15 / 17

Optimal alignments

N.B.

- Whether an alignment is optimal, depends on the scoring function!
- If $\mathcal A$ is an optimal alignment of s,t, then, given any alignment $\mathcal A'$ of s,t,

$$score(A) \ge score(A')$$

(obviously using the same scoring function).

• There may be more than one optimal alignment of two strings s and t.

Our computational problem: Global alignment

Now we can formally state our computational problem:

Problem variant 1

Input: Two strings s, t over alphabet Σ , scoring function f.

Output: An optimal alignment of s and t.

Problem variant 2

Input: Two strings s, t over alphabet Σ , scoring function f. Output: sim(s, t).

Note that in Variant 2, we want to output a number, we are not interested in an optimal alignment itself.

16 / 17 17 / 17