Algorithms for Computational Biology

Zsuzsanna Liptak

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

‘Strings and Sequences in Computer Science

Some formalism on strings (1): Examples

Examples
e DNA: ¥ = {A,C,G,T}, alphabet size |X| =4,
a string of length 5 is s = ACCTG, s; = A,sp = s3 =C,s54 = T,s5 = G.
e RNA: ¥ = {A,C,G,U}, again alphabet size is 4

e protein: ¥ = {A,C,D,EF,... W,Y}, alphabet size is 20,
ANRFYWNL is a string over X of length 8

o English alphabet: ¥ = {a,b,c,... x,y,z} of size 26

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

3. tis substring of s < t is prefix of a suffix of s < t is suffix of a prefix
of s

Some formalism on strings (1)

e ¥ a finite set called alphabet

its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from ¥

we write strings as s = 515, ... s, where the s; (for i =1,...,n) are
characters from X

N.B.: We number strings from 1, not from 0

|s| is the length of string s

€ is the empty string, the (unique) string of length 0

3" is the set of strings of length n
o T =2, =" =320uUxtUX?U... is the set of all strings over ¥

2/17
Some formalism on strings (2)
Let s =s;...s, be a string over ¥. ex. s = ACCTG
e tisasubstringof sift=cort=s;...5 forsomel <i<j<n
(i.e., a "contiguous piece” of s) CCT, AC, ...
o tisaprefixof sif t=cort=s,...5 forsomel1 <j<n
(i.e., a "beginning” of s) AC, ACCTG, ...
e tisasuffixof sift=cort=s;...s,forsomel <i<n
(i.e., an "end” of s) CCTG,G, ...
e tis a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT,CCT, ...
N.B.
string = sequence, but substring # subsequence!
4 /17

Counting strings

Question
How big is X7, i.e., how many strings of length n are there?

Answer

|Z"| = |Z|". E.g. thereis |X|° = 1 string of length 0, there are 4 strings of
length 1 over the DNA alphabet, 16 of length 2, 64 of length 3, etc. (We
already saw this argument in connection with the degeneracy of the
genetic code.)

Counting substrings, subsequences etc.

Question
Given s = s1...s,. How many

o prefixes,
e suffixes,
o substrings,
o subsequences
does s have (exactly, at most, at least)?

Formalizing alignments

Formal definition
An alignment A of s, t € X* is a matrix with two rows and entries from
Y U{—}, where

1. deleting all gaps from the first row yields s
2. deleting all gaps from the second row yields t

3. no column consists of two gaps

Ex:

-ACCT ACCT ACCT -ACCT ---ACCT
CA--T —-CAT CAT- CA--T CAT--——-

Length of alignments

Given s, t € ¥* and an alignment A of s and t, how long is A at most?
At least?

1/17

Formalizing alignments

Informal definition
Given s,t € X* (i.e., s, t are two strings over the same alphabet ¥, not

necessarily of the same length), an alignment of s and t is a way of writing
one above the other, possibly inserting gaps (denoted " —"), in such a way
that (a) both have the same length, and (b) no two gaps are above each

other.

Ex: five different alignments of s = ACCT and t = CAT

—-ACCT ACCT ACCT —-ACCT ---ACCT
CA--T —-CAT CAT- CA--T CAT----

Formalizing alignments

Alignment A has length |A|, and the columns of A are called AW for
i=1,...,]A|

Ex:

—-ACCT ACCT ACCT —-ACCT ---ACCT
CA--T -CAT CAT- CA--T CAT----

E.g. for the first alignment above, A® = (g) and A® = (:)

Scoring alignments

Informal definition

The score of an alignment is the sum of the scores of its columns. A
scoring function scores each column according to whether it is a match
(two characters which are the same), a mismatch (two different
characters), or a gap (gap+character or character+gap).

Example

‘ match mismatch gap
Al 2 -1 -1
1 1 -1 -2

Usually match > 0 and mismatch, gap < 0.

10 / 17

12 /17

Scoring alignments

| match mismatch gap
Al 2 -1 -1

Formal definition
A scoring function f is a pair (p,g), where p: £ x ¥ — R and g € R, and
for a column A = (;) we have

f(x)i p(x,y) ifx,yeX
y) g fx=—ory=—.

E.g. for i :
e g=-1, and
2 ifa=»b
e pla,b) = v
-1 ifa#b.

This will allow us to define more general scoring functions later.

13 /17

Optimal alignments

Def.
Given s, t € X* and scoring function f, the similarity of s and t, is defined
as

sim(s, t) = max{score(A) : Ais an alignment of s and t.}

15 /17

Optimal alignments

N.B.

o Whether an alignment is optimal, depends on the scoring function!

e If A is an optimal alignment of s, t, then, given any alignment A’ of
s, t,
score(A) > score(A’)

(obviously using the same scoring function).
e There may be more than one optimal alignment of two strings s and t.

16 /17

Scoring alignments

So now we have: Given a scoring function f = (p, g) and an alignment A,
the score of A is

|A|
score(A) = Z FLAD),
i=1

the sum of the scores of the alignment columns.

14 /17

Optimal alignments

Def.
Given s, t € X* and scoring function f, the similarity of s and t, is defined
as

sim(s, t) = max{score(A) : A'is an alignment of s and t.}

Def.
An optimal alignment of s and t is an alignment .4 with maximum score,
i.e. an alignment A s.t.

score(A) = sim(s, t).

Equivalently:
score(A) = max{score(A’) : A’ is an alignment of s and t.}

15 /17

Our computational problem: Global alignment

Now we can formally state our computational problem:
Problem variant 1

Input: Two strings s, t over alphabet ¥, scoring function f.
Output: An optimal alignment of s and t.

Problem variant 2

Input: Two strings s, t over alphabet X, scoring function f.
Output: sim(s, t).

Note that in Variant 2, we want to output a number, we are not interested
in an optimal alignment itself.

17 /17

