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Phylogenetics Summary



What is a phylogenetic tree?

wolf cat lion horse rhino
species 
(taxa)

speciation 
events

Phylogenetic trees display the evolutionary relationships among a set of
objects (species). Contemporary species are represented by the leaves.
Internal nodes of the tree represent speciation events (≈ common
ancestors, usually extinct).
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Different types of phylogenetic trees

• rooted vs. unrooted (root on top/bottom vs. root in the middle)

• binary (fully resolved) vs. multifurcating (polytomies)

• are edge lengths significant?

• is there a time scale on the side?
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Phylogenetic reconstruction

Goal
Given n objects and data on these objects, find a phylogenetic tree with
these objects at the leaves which best reflects the input data.
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Phylogenetic reconstruction

Note:
We need to define more precisely

• what kind of input data we have,

• what kind of tree we want (e.g. rooted or unrooted), and

• what we mean by “reflect the data.”
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Phylogenetic reconstruction

There are two main issues:

1. How well does a tree reflect my data?

2. How do we find such a tree?
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Number of phylogenetic trees

Say we have answered these questions, then: Could we just list all possible
trees and then choose the/a best one?

# taxa # unrooted trees # rooted trees
n (2n − 5)!! (2n − 3)!!

1 1 1
2 1 1
3 1 3
4 3 15
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Number of phylogenetic trees

All phylogenetic trees (rooted and unrooted) on 4 taxa.
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Number of phylogenetic trees

Theorem
There are Un = (2n − 5)!! =

∏n
i=3(2i − 5) unrooted binary phylogenetic

trees on n objects, and Rn = (2n − 3)!! =
∏n

i=2(2i − 3) rooted binary
phylogenetic trees on n objects.

Proof
By induction on n, using that (1) we can get every unrooted tree on n + 1
objects in a unique way by adding the (n + 1)st leaf to an unrooted tree
on the first n objects; (2) an unrooted binary tree with n leaves has 2n− 3
edges, (3) every unrooted tree on n objects can be rooted in (number of
edges) ways, yielding a rooted tree on n objects.
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Number of phylogenetic trees

#taxa #unrooted trees #rooted trees
n (2n − 5)!! (2n − 3)!!

1 1 1
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10, 395
8 10, 395 135, 135
9 135, 135 2, 027, 025

10 2, 027, 025 34, 459, 425
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Number of phylogenetic trees

So there are super-exponentially many trees:
We cannot check all of them!
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Types of input data

We can have two kinds of input data:

• distance data: n× n matrix of pairwise distances between the taxa, or

• character data: n×m matrix giving the states of m characters for the
n taxa

12 / 45



Distance data

Distance data is given as an (n × n) matrix M with the pairwise distances
between the taxa.

Ex.
a b c

a 0 5 2
b 5 0 4
c 2 4 0

E.g., Ma,b = 5 means that
the distance between a and b
is 5. Often, this is the edit
distance (between two genomic
sequences, or between homolo-
gous proteins, . . . ).

We want to find a tree with a, b, c at the leaves s.t. the distance in the
tree (the path metric) between a and b is 5, between a and c is 2, etc.

13 / 45



Distance data

Path metric of a tree
Given a tree T , the path-metric of T is dT , defined as: dT (u, v) = sum of
edge weights on the (unique) path between u and v .

Example

b

c

a
3

2 5

4 1
2

3
d

e

dT (a, b) = 5,
dT (a, d) = 11,
dT (c , d) = 9, . . .

Note
d(u, v) is also defined for inner nodes u, v , but we only need it for leaves.
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Example

For our earlier example, we can find such a tree:

Ex. 1 (from before)
a b c

a 0 5 2
b 5 0 4
c 2 4 0

b

c

a
1,5

0,5

3,5

Question
Is it always possible to find a tree s.t. its path-metric equals the input
distances? I.e. does such a tree exist for any input matrix M?
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Distance data

First of all, the input matrix M has to define a metric (= a distance
function), i.e. for all x , y , z ,

• M(x , y) ≥ 0 and (M(x , y) = 0 iff x = y) (positive definite)

• M(x , y) = M(y , x) (symmetry)

• M(x , y) + M(y , z) ≥ M(x , z) (triangle inequality)

For example, the edit distance is a metric (on strings), the Hamming
distance (on strings of the same length), the Euclidean distance (on R2).
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Conditions on distance matrix

Question:
When does a tree exist whose path metric agrees with a distance matrix
M?

Answer:

• if we want a rooted tree: M needs to be ultrametric

• if we want an unrooted tree: M needs to be additive

17 / 45



Rooted trees and the molecular clock

wolf cat lion horse rhino
species 
(taxa)

speciation 
events

In a rooted phylogenetic tree, the molecular clock assumption holds: that
the speed of evolution is the same along all branches, i.e. the path
distance from each leaf to the root is the same. Such a tree is also called
an ultrametric tree.
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Ultrametrics and the three-point condition

Three point condition

Let d be a metric on a set of objects O, then d is an ultrametric if
∀ x , y , z ∈ O:

d(x , y) ≤ max{d(x , z), d(z , y)}

dxy d d=xz yz

x

y

z

x

y

z

Figure : Three point condition. It implies that the path metric of a rooted tree is
an ultrametric.

In other words, among the three distances, there is no unique maximum.
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Example

Ex. 2
a b c d

a 0 10 10 10
b 10 0 2 6
c 10 2 0 6
d 10 6 6 0

a b c d

5

3

1

Checking the ultrametric condition, we see that:

• for a, b, c we get 2, 10, 10 — okay

• for a, b, d we get 6, 10, 10 — okay

• for a, c , d we get 6, 10, 10 — okay

• for b, c , d we get 2, 6, 6 — okay
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Example

Compare this to our earlier example. There the matrix M does not define
an ultrametric!

Ex. 1 (from before)
a b c

a 0 5 2
b 5 0 4
c 2 4 0

For the triple a, b, c (the only
triple), we get: 2, 4, 5, and
there is a unique maximum: 5.

Indeed, the only tree we found
was not rooted:

b

c

a
1,5

0,5

3,5
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Ultrametrics and the three-point condition

Theorem
Given an (n × n) distance matrix M. There is a rooted tree whose path
metric agrees with M if and only if M defines an ultrametric (i.e. if and
only if the 3-point-condition holds). This tree is unique1.

Algorithm

The algorithm UPGMA (unweighted pair group mtheod using arithmetic
averages, Michener & Sokal 1957), a hierarchical clustering algorithm,
constructs such a tree, given an input matrix which is ultrametric. Its
running time is O(n2).

1i.e. there is only one such tree
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Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees?

Four point condition.

Let d be a metric on a set of objects O, then d is an additive metric if
∀ x , y , u, v ∈ O:

d(x , y) + d(u, v) ≤ max{d(x , u) + d(y , u), d(x , v) + d(y , u)}

In other words, among the three sums of two distances, there is no unique
maximum.
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Additive metrics and the four-point condition

dxy

yu

+ < =+ +

x

y

u

v

d

xu

dyv d

d

uv

d xv

Figure : The four point condition. It implies that the path metric of a tree is an
additive metric.
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Example

b

c

a
3

2 5

4 1
2

3
d

e

For ex., choose these 4 points: a, b, c , e. Then we get the three sums:
d(a, b) + d(c , e) = 5 + 8 = 13, d(a, c) + d(b, e) = 12 + 9 = 21, and
d(a, e) + d(b, c) = 10 + 11 = 21. Among 13, 21, 21, there is no unique
maximum—okay. (Careful, this has to hold for all quadruples; how many
are there?)
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Additive metrics and the four-point condition

Theorem
Given an (n × n) distance matrix M. There is an unrooted tree whose
path metric agrees with M if and only if M defines an additive metric (i.e.
if and only if the 4-point-condition holds). This tree is unique.

Algorithm

There are algorithms which, given M, compute this unrooted tree in O(n3)
time (e.g. Neighbor Joining, Saitu & Nei, 1987).

In fact, it is even possible to compute a “good” tree if the matrix is not
additive but “almost” (all this needs to be defined precisely, of course).
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Summary for distance data

• When the input is a distance matrix, then we are looking for a tree
whose path metric agrees with M.

• A rooted tree agreeing with M exists if and only if the distance matrix
M defines an ultrametric.

• This tree can then be computed efficiently (i.e. in polynomial time),
with UPGMA - which we studied!

• An unrooted tree agreeing with M exists if and only if the distance
matrix M defines an additive metric. It can then computed efficiently
(i.e. in polynomial time), with Neighbor Joining - which we did not
study.
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Character data

Now the input data consists of states of characters for the given objects,
e.g.

• morphological data, e.g. number of toes, reproductive method, type
of hip bone, . . . or

• molecular data, e.g. what is the nucletoide in a certain position.
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Character data

Example

C1 : # wheels C2 : existence of engine

bicycle 2 0
motorcycle 2 1
car 4 1
tricycle 3 0

• objects (species): Bicycle, motorcycle, tricycle, car

• characters: number of wheels; existence of an engine

• character states: 2, 3, 4 for C1;
0, 1 for C2 (1 = YES, 0 = NO)

• This matrix M is called a character-state-matrix, of dimension (n ×m),

where for 1 ≤ i ≤ n, 1 ≤ j ≤ m: Mij = state of character j for object i .

(Here: n = 4,m = 2.)
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Character data

01

bicycle cartricyclemotorcycle

invention of engine

(a)

2 2 3 4

number of
wheels

(b)

motorcycle car bicycletricycle
0011

0

Two different phylogenetic trees for the same set of objects.
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Character data

We want to avoid

• parallel evolution (= convergence)

• reversals

Together these two conditions are also called homoplasies.

Mathematical formulation: compatibility.

31 / 45



Compatibility

Definition
A character is compatible with a tree if all inner nodes of the tree can be
labeled such that each character state induces one connected subtree.

01

bicycle cartricyclemotorcycle

invention of engine

(a)

2 2 3 4

number of

wheels

(b)

motorcycle car bicycletricycle

0011

0

This tree is compatible with C2, one possibility of labeling the inner nodes
is shown.
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Perfect Phylogeny

Definition
A tree T is called a perfect phylogeny (PP) for C if all characters C ∈ C
are compatible with T .

Example

AA AC CC CG GG
alpha beta gamma delta epsilon

Why? We have to find a labeling of the inner nodes s.t. for both characters C1

and C2, each state induces a subtree.
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Perfect Phylogeny

Definition
A tree T is called a perfect phylogeny (PP) if all characters are compatible
with T .

Example

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG

Our first tree for the vehicles was also a PP.
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Perfect Phylogeny

• Ideally, we would like to find a PP for our input data.

• Deciding in general whether a PP exists is NP-hard.

• This is not really a problem, since most of the time, no PP exists
anyway. Why: due to homoplasies; because our input data has errors;
our evolutionary model may has errors; and, and, and . . .

• Therefore we usually want to find a best possible tree.
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Parsimony

What is a best possible tree?

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG

Why is this tree “perfect”?
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Parsimony
What is a best possible tree?

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG1

1

1

1

Why is this tree “perfect”?

Because it has few changes of states!
In red, we marked the edges where there are state changes (an evolutionary event

happened), and how many (in this case, always 1).
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Parsimony

Definition
The parsimony cost of a phylogenetic tree with labeled inner nodes is the
number of state changes along the edges (i.e. the sum of the edge costs,
where the cost of an edge = number of characters whose state differs
between child and parent).

AA AC CC CG GG
alpha beta gamma delta epsilon

AC

AC

CC

CG1

1

1

1

The parsimony cost of this labeled tree is 4.
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Parsimony

Definition
The parsimony cost of a phylogenetic tree (without labels on the inner
nodes) is the minimum of the parsimony cost over all possible labelings of
the inner nodes.

AA AC CC CG GG
alpha beta gamma delta epsilon

The parsimony cost of this tree is 4, because the best labeling has cost 4.
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Parsimony

Phylogenetic Reconstruction with Character Data

Given a character-state matrix M, our goal is to find a phylogenetic tree
which minimizes the parsimony cost.

Given the character-state matrix M, we split the problem in two
sub-problems:

1. Small Parsimony: Given a phylogenetic tree, find its parsimony cost,
i.e. find a most parsimonious labeling of the inner nodes. This
problem can be solved efficiently.

2. Large Parsimony or Maximum Parsimony: Find a tree with minimum
parsimony cost. This problem is NP-hard.
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Small Parsimony

Small Parsimony Problem

Given: a phylogenetic tree T with character-states at the nodes.
Find: a labeling of the inner nodes with states with minimum parsimony
cost.

Algorithm

This problem can be solved using Fitch’ algorithm, which runs in time
O(nmr), where n = number of species, m = number of characters, and
r = maximum number of states over all characters.
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Maximum Parsimony

Maximum Parsimony Problem

The maximum parsimony problem is, given a character-state matrix, find a
phylogenetic tree with lowest parsimony cost (= a “most parsimonious
tree”).

• When a PP exists, then it is also the most parsimonious tree.

• In general, this problem is NP-hard.
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Algorithms for Maximum Parsimony

• Since problem NP-hard, we cannot hope to find an algorithm that
solves it efficiently.

• We have seen two algorithms for this problem:

1. Greedy Sequential Addition Algorithm - heuristic algorithm: guaranteed
polynomial running time but no guarantee on the quality of the solution

2. Branch-and-Bound for Parsimony - runtime heuristic: guarantee on
exact solution, but no guarantee on the running time (may or may not
be fast)
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Summary for character data

• When the input is a character-state matrix, then we would like to find
a tree which is compatible with each character.

• Such a tree is called a perfect phylogeny (PP).

• Usually, no PP exists, therefore in general . . .

• We are looking for a most parsimonious tree (a tree with lowest
parsimony cost).

• The parsimony cost is defined as the minimum number of the state
changes on the edges over all possible labelings of the inner nodes.

• Recall: There are super-exponentially many trees on n taxa (both
rooted and unrooted), so we cannot try them all.
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Summary for character data (cont’ed)

• recall: We are looking for a a most parsimonious tree (a tree with
lowest parsimony cost).

• Problem is split into Small Parsimony and Maximum Parsimony.

• Small Parsimony can be solved efficienly, e.g. by Fitch’ algorithm.

• Maximum Parsimony is NP-hard, so probably no efficient algorithms
exist.

• We saw two algorithms for Maximum Parsimony: one heuristic
(Greedy Seq. Add. Alg.) and one exact algorithm which is a runtime
heuristic algorithm (Branch-and-Bound for Parsimony).
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